Advertisement

Journal of Statistical Physics

, Volume 92, Issue 3–4, pp 353–368 | Cite as

(Almost) Gibbsian Description of the Sign Fields of SOS Fields

  • Aernout C. D. van Enter
  • Senya B. Shlosman
Article

Abstract

An example is presented of a measure on a lattice system which has a measure zero set of points (configurations) where some conditional probability can be discontinuous, but does not become a Gibbs measure under decimation (or other) transformations. We also discuss some related issues.

Non-Gibbsian measures weak versus strong non-Gibbsianness robustly non-Gibbsian measures projected Gibbs measures cluster models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Berretti, Some properties of random Ising models, J. Stat. Phys. 38:483–496 (1985).Google Scholar
  2. 2.
    E. Bolthausen, J.-D. Deuschel, and O. Zeitouni, Entropic repulsion of the lattice free field, Comm. Math. Phys. 170:417–443 (1995).Google Scholar
  3. 3.
    R. Brandenberger and C. E. Wayne, Decay of correlations in surface models, J. Stat. Phys. 27:425–440 (1982).Google Scholar
  4. 4.
    J. Bricmont, A. El Mellouki, and J. Fröhlich, Random surfaces in statistical mechanics: roughening, rounding, wetting..., J. Stat. Phys. 42:743–798 (1986).Google Scholar
  5. 5.
    J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys. 178:703–732 (1996).Google Scholar
  6. 6.
    J. Bricmont, A. Kupiainen, and R. Lefévere, Renormalization group pathologies and the definition of Gibbs states, Commun. Math. Phys. 194:359–388 (1998).Google Scholar
  7. 7.
    S. Yu. Dashian and B. S. Nahapetian, An approach towards description of random fields, Izv. Sat. Ak. Nauk Arm. 30:1–11 (1995).Google Scholar
  8. 8.
    R. L. Dobrushin, Private communication (1992), talk in Renkum meeting on probability and physics (1995) and posthumous manuscript, see also R. L. Dobrushin and S. B. Shlosman, Gibbsian representation of non-Gibbsian fields, Russ. Math. Surveys 25:285–299 (1997).Google Scholar
  9. 9.
    R. L. Dobrushin and M. R. Martirosyan, Possibility of the high temperature phase transitions due to the many-particle nature of the potential, Theor. Math. Phys. 75:443–448 (1988).Google Scholar
  10. 10.
    R. L. Dobrushin and B. S. Nahapetian, Strong convexity of pressure, Theor. Math. Phys. 20:782–790 (1974).Google Scholar
  11. 11.
    T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large-block majority-spin transformations, J. Stat. Phys. 55:171–181 (1989).Google Scholar
  12. 12.
    H. von Dreyfus, A. Klein, and J. F. Perez, Taming Griffiths singularities: infinite differentiability of correlation functions, Comm. Math. Phys. 170:21–39 (1995).Google Scholar
  13. 13.
    R. Fernández and C.-Ed. Pfister, Global specifications and non-quasilocality of projections of Gibbs measures, Ann. Prob. 25:1284–1315 (1997).Google Scholar
  14. 14.
    M. E. Fisher, On discontinuity of the pressure, Comm. Math. Phys. 26:6–14 (1972).Google Scholar
  15. 15.
    M. E. Fisher and G. W. Milton, Classifying first-order phase transitions, Physica A 138:22–54 (1986).Google Scholar
  16. 16.
    J. Fröhlich and J. Imbrie, Improved perturbation expansion for disordered systems: beating Griffiths singularities, Comm. Math. Phys. 96:145–180, 1984.Google Scholar
  17. 17.
    J. Fröhlich and B. Zegarlinski, The high temperature phase of a long range spin glass, Comm. Math. Phys. 110:121–155 (1987).Google Scholar
  18. 18.
    A. Gandolfi, C. M. Newman, and D. L. Stein, Exotic states in long-range spin glasses, Comm. Math. Phys. 157:371–387 (1993).Google Scholar
  19. 19.
    H.-O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin/New York, 1988.Google Scholar
  20. 20.
    G. Gielis, Spin systems with random interactions: the Griffiths regime, Leuven Ph.D. dissertation, 1998.Google Scholar
  21. 21.
    G. Gielis and C. Maes, The uniqueness regime of Gibbs fields with unbounded disorder, J. Stat. Phys. 81:829–835 (1995).Google Scholar
  22. 22.
    G. Gielis and C. Maes, High temperature behavior without analyticity, Markov Processes and Related Fields 2:41–50 (1996).Google Scholar
  23. 23.
    R. B. Griffiths, Non-analytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23:17–19 (1969).Google Scholar
  24. 24.
    R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems, Phys. Rev. Lett. 41:917–920 (1978).Google Scholar
  25. 25.
    R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations, J. Stat. Phys. 20:499–545 (1979).Google Scholar
  26. 26.
    R. B. Griffiths and D. Ruelle, Strict convexity (“continuity”) of the pressure in lattice systems, Comm. Math. Phys. 23:169–175.Google Scholar
  27. 27.
    O. Häggström, Almost sure quasilocality fails for the random-cluster model on a tree, J. Stat. Phys. 84:1351–1361 (1996).Google Scholar
  28. 28.
    R. B. Israel, Banach algebras and Kadanoff transformations, in Random Fields (Esztergom, 1979), Vol. II, J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), pp. 593–608.Google Scholar
  29. 29.
    T. Kennedy, Majority rule at low temperatures on the square and triangular lattices, J. Stat. Phys. 86:1089–1107 (1997).Google Scholar
  30. 30.
    J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion, J. Stat. Phys. 46:39–49 (1987).Google Scholar
  31. 31.
    T. M. Liggett, Interacting Particle Systems (Springer-Verlag, Heidelberg, New York, Tokyo, 1985).Google Scholar
  32. 32.
    J. Lörinczi, Some results on the projected two-dimensional Ising model, in On Three Levels, M. Fannes, C. Maes, and A. Verbeure, eds. (Plenum Press, New York, London, 1994), pp. 373–380.Google Scholar
  33. 33.
    J. Lörinczi, On limits of the Gibbsian formalism in thermodynamics, Groningen, Ph.D. dissertation, 1995.Google Scholar
  34. 34.
    J. Lörinczi, Non-Gibbsianness of the reduced SOS-measure, Austin archives 97–178 and Stoch. Proc. Appl. 74:893–88 (1909).Google Scholar
  35. 35.
    J. Lörinczi and C. Maes, Weakly Gibbsian measures for lattice systems, J. Stat. Phys. 89:561–579 (1997).Google Scholar
  36. 36.
    J. Lörinczi, C. Maes, and K. Vande Velde, Transformations of Gibbs measures, Austin archives 97–571.Google Scholar
  37. 37.
    J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, in Cellular Automata and Cooperative Systems, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993), pp. 423–432.Google Scholar
  38. 38.
    C. Maes and S. Shlosman, Freezing transition in the lsing model without internal contours, preprint, Austin archives 98–163.Google Scholar
  39. 39.
    C. Maes and K. Vande Velde, The (non-)Gibbsian nature of states invariant under stochastic transformations, Physica A 206:587–603 (1994).Google Scholar
  40. 40.
    C. Maes and K. Vande Velde, The fuzzy Potts model, J. Phys. A, Math. Gen. 28: 4261–4271 (1995).Google Scholar
  41. 41.
    C. Maes and K. Vande Velde, Relative energies for non-Gibbsian states, Comm. Math. Phys. 189:277–286 (1997).Google Scholar
  42. 42.
    F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations, J. Stat. Phys. 72:1169–1177 (1993).Google Scholar
  43. 43.
    F. Martinelli and E. Olivieri, Instability of renormalization-group pathologies under decimation, J. Stat. Phys. 79:25–42 (1995).Google Scholar
  44. 44.
    C.-Ed. Pfister and K. Vande Velde, Almost sure quasilocality in the random cluster model, J. Stat. Phys. 79:765–774 (1995).Google Scholar
  45. 45.
    R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian, Comm. Math. Phys. 124:1–7 (1989).Google Scholar
  46. 46.
    G. L. Sewell, Statistical mechanical theory of metastable states, Lett. Nuovo Cimento 10:430–434 (1974).Google Scholar
  47. 47.
    W. G. Sullivan, Potentials for almost Markovian random fields, Comm. Math. Phys. 33:61–74 (1973).Google Scholar
  48. 48.
    A. C. D. van Enter, Ill-defined block-spin transformations at arbitrarily high temperatures, J. Stat. Phys. 83:761–765 (1996).Google Scholar
  49. 49.
    A. C. D. van Enter, On the possible failure of the Gibbs property for measures on lattice systems, Markov Proc. and Rel. Fields 2:209–224 (1996).Google Scholar
  50. 50.
    A. C. D. van Enter and R. Fernández, A remark on different norms and analyticlty for many-particle interactions, J. Stat. Phys. 56:965–972 (1989).Google Scholar
  51. 51.
    A. C. D. van Enter, R. Fernández, and R. Kotecký, Pathological behavior of renormalization group maps at high fields and above the transition temperature, J. Stat. Phys. 79:969–992 (1995).Google Scholar
  52. 52.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong, Phys. Rev. Lett. 66:3253–3256 (1991).Google Scholar
  53. 53.
    A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).Google Scholar
  54. 54.
    A. C. D. van Enter and J. Lörinczi, Robustness of the non-Gibbsian property: some examples, J. Phys. A, Math. and Gen. 29:2465–2473 (1996).Google Scholar
  55. 55.
    K. Vande Velde, On the question of quasilocality in large systems of locally interacting components, K. U. Leuven, Ph.D. dissertation, 1995.Google Scholar
  56. 56.
    B. Zegarlinski, Spin glasses with long-range interactions at high temperature, J. Stat. Phys. 47:911–930 (1987).Google Scholar
  57. 57.
    B. Zegarlinski, Random spin systems with long-range interactions, in Mathematics of Spin Glasses and Neural Networks, A. Bovier and P. Picco, eds. (Birkhäuser, Boston, 1998), pp. 289–320.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  • Senya B. Shlosman
    • 2
  1. 1.Institute for Theoretical PhysicsGroningenThe Netherlands;
  2. 2.CNRS Luminy, Case 907, CPTMarseille Cedex 9France;

Personalised recommendations