Reliable Computing

, Volume 9, Issue 1, pp 81–87 | Cite as

COCOS'02 - A Workshop on Global Constrained Optimization and Constraint Satisfaction October 2–4, 2002, Sophia-Antipolis, France

  • R. Baker Kearfott
Conference Report

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    COCONUT: COCOS'02, The First International Workshop on Global Constrained Optimization and Constraint Satisfaction, 2002, http://liawww.epfl.ch/Cocos02/cocos02.html. COCOS'02 87Google Scholar
  2. 2.
    Floudas, C.A.:DeterministicGlobalOptimization: Theory, Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  3. 3.
    Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New York, 1992.Google Scholar
  4. 4.
    Jansson, C.: Rigorous Lower and Upper Bounds in Linear Programming, Tech. Rep., TU Hamburg-Harburg, 2002, http://www.ti3/tu-harburg.de/paper/jansson/verification.ps.Google Scholar
  5. 5.
    Kearfott, R. B.: Decomposition of Arithmetic Expressions to Improve the Behavior of Interval Iteration for Nonlinear Systems, Computing 47 (2) (1991), pp. 169–191.Google Scholar
  6. 6.
    Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  7. 7.
    Lasserre, J.B.:AnExplicitEquivalent Positive Semidefinite ProgramforNonlinear 0–1 Programs, SIAM J. Optim. 12 (3) (2002), pp. 756–769.Google Scholar
  8. 8.
    Lasserre, J. B.: Global Optimization with Polynomials and the Problem of Moments, SIAM J. Optim. 11 (3) (2001), pp. 796–817.Google Scholar
  9. 9.
    Lasserre, J. B.: GloptiPoly-Global Optimization over Polynomials with Matlab and SeDuMi, 2002, http://www.laas.fr/~henrion/software/gloptipoly/gloptipoly.html.Google Scholar
  10. 10.
    Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.Google Scholar
  11. 11.
    Neumaier, A. and Shcherbina, O.: Safe Bounds in Linear and Mixed-Integer Programming, Tech. Rep., 2002, http://www.mat.univie.ac.at/~neum/papers.html.Google Scholar
  12. 12.
    Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization,Wiley, New York, 1988.Google Scholar
  13. 13.
    Skelboe, S.: Computation of Rational Interval Functions, BIT 14 (1974), pp. 87–95.Google Scholar
  14. 14.
    Tawarmalani, M. and Sahinidis, N. V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, Dordrecht, 2002.Google Scholar
  15. 15.
    Van Hentenryck, P., Michel, L., and Deville, Y.: Numerica: A Modeling Language for Global Optimization, MIT Press, Cambridge, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Baker Kearfott
    • 1
  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations