Reliable Computing

, Volume 9, Issue 1, pp 81–87 | Cite as

COCOS'02 - A Workshop on Global Constrained Optimization and Constraint Satisfaction October 2–4, 2002, Sophia-Antipolis, France

  • R. Baker Kearfott
Conference Report


Mathematical Modeling Computational Mathematic Industrial Mathematic Constraint Satisfaction Global Constrain Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    COCONUT: COCOS'02, The First International Workshop on Global Constrained Optimization and Constraint Satisfaction, 2002, COCOS'02 87Google Scholar
  2. 2.
    Floudas, C.A.:DeterministicGlobalOptimization: Theory, Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  3. 3.
    Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New York, 1992.Google Scholar
  4. 4.
    Jansson, C.: Rigorous Lower and Upper Bounds in Linear Programming, Tech. Rep., TU Hamburg-Harburg, 2002, http://www.ti3/ Scholar
  5. 5.
    Kearfott, R. B.: Decomposition of Arithmetic Expressions to Improve the Behavior of Interval Iteration for Nonlinear Systems, Computing 47 (2) (1991), pp. 169–191.Google Scholar
  6. 6.
    Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  7. 7.
    Lasserre, J.B.:AnExplicitEquivalent Positive Semidefinite ProgramforNonlinear 0–1 Programs, SIAM J. Optim. 12 (3) (2002), pp. 756–769.Google Scholar
  8. 8.
    Lasserre, J. B.: Global Optimization with Polynomials and the Problem of Moments, SIAM J. Optim. 11 (3) (2001), pp. 796–817.Google Scholar
  9. 9.
    Lasserre, J. B.: GloptiPoly-Global Optimization over Polynomials with Matlab and SeDuMi, 2002, Scholar
  10. 10.
    Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.Google Scholar
  11. 11.
    Neumaier, A. and Shcherbina, O.: Safe Bounds in Linear and Mixed-Integer Programming, Tech. Rep., 2002, Scholar
  12. 12.
    Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization,Wiley, New York, 1988.Google Scholar
  13. 13.
    Skelboe, S.: Computation of Rational Interval Functions, BIT 14 (1974), pp. 87–95.Google Scholar
  14. 14.
    Tawarmalani, M. and Sahinidis, N. V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer Academic Publishers, Dordrecht, 2002.Google Scholar
  15. 15.
    Van Hentenryck, P., Michel, L., and Deville, Y.: Numerica: A Modeling Language for Global Optimization, MIT Press, Cambridge, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Baker Kearfott
    • 1
  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations