, Volume 10, Issue 1, pp 85–95 | Cite as

Specificity of an Aspergillus Niger Esterase Deacetylating Cellulose Acetate



A purified acetyl esterase (AE), isolated from a commercial enzyme preparation, released acetic acid from water-soluble and water-insoluble cellulose acetates (CAs), native and chemically acetylated xylan as well as acetylated starch. The AE specifically cleaved off the acetyl substituents from the C2- and C3-positions from CAs of DS <1.8 and left the acetyl substituents at the C6-positions intact without degrading the polysaccharide. The activity of endoglucanase was enhanced by the presence of acetyl esterase, while the acetyl esterase derived no advantage from the presence of the endoglucanase; it was able to function independently.

Acetylated xylan Acetyl esterase Aspergillus niger Cellulose acetate Endoglucanase Regioselective deacetylation Substrate inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altaner C., Saake B. and Puls J. 2001. Mode of action of acetylesterases associated with endoglucanases towards water-soluble and-insoluble cellulose acetates. Cellulose 8: 159-265.Google Scholar
  2. Biely P., Puls J. and Schneider H. 1985. Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett. 186: 80-84.Google Scholar
  3. Buchanan C.M., Edgar K.J., Hyatt J.A. and Wilson A.K. 1991. Preparation of cellulose [1-13C] acetates and determination of monomer composition by NMR spectroscopy. Macromolecules 24: 3050-3059.Google Scholar
  4. Coutinho P.M. and Henrissat B. 1999. Carbohydrate-active enzymes. Server at URL: http://afmb.cnrs-mrs.fr/~cazy/ CAZY/index. html.Google Scholar
  5. Cybinski D.H., Layton I., Lowry J.B. and Dalrymple B.P. 1999. An acetyl xylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl. Microbiol. Biotechnol. 52: 221-225.Google Scholar
  6. de Graaff L.H.C., Visser J., den Broek H.C.A.V., Strozyk F., Kormelink F.J.M. and Boonman J.C.P. 1992. Cloning, expression and use of genes for acetyl xylan esterases of fungal origin. Eur. Pat. Appl. EP 507,369; 7.10.Google Scholar
  7. Deus C., Friebolin H. and Siefert E. 1991. Partially acetylated cellulose-synthesis and determination of the substituent distribution via proton NMR spectroscopy. Makromol. Chem. 192: 75-83.Google Scholar
  8. Downing K.M., Do C.S. and Zabriskie D.W. 1987. Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate. Biotechnol. Bioeng. 29: 1086-1096.Google Scholar
  9. Gu J.-D., Eberiel D., McCarthy S.P. and Gross R.A. 1993. Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments. J. Environ. Polym. Degrad. 1: 281-291.Google Scholar
  10. Hägglund E., Lindberg B. and McPherson J. 1956. Dimethylsulphoxide, a solvent for hemicelluloses. Acta Chem. Scand. 10: 1160-1164.Google Scholar
  11. Hostettler F., Borel E. and Deuel H. 1951. Ñber die Reaktion der 3,5-Dinitrosalicylsäure durch Zucker. Helv. Chim. Acta 257: 2132-2139.Google Scholar
  12. Kim I.-S., Cho S.-G. and Choi Y.-J. 1993. Molecular cloning and expression of the acetyl xylan esterase gene of Bacillus stearothermophilus in Escherichia coli. Sanop Misaengmul Hakhoechi 21: 542-548.Google Scholar
  13. Koseki T., Furuse S., Iwano K., Sakai H. and Matsuzawa H. 1997. An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem. J. 326: 485-490.Google Scholar
  14. Kowsaka K., Okajima K. and Kamide K. 1988. Determination of the distribution of the substituent group in cellulose acetate by full assignment of all carbonyl carbon peaks of carbon-13 (protondecoupled) NMR spectra. Polym. J. 20: 827-836.Google Scholar
  15. Lineweaver H. and Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666.Google Scholar
  16. Loseries S. 1999. Enzymatic and chemical treatments of oat spelt xylans. Diploma Thesis, Hamburg University of Applied Sciences, no. 65.Google Scholar
  17. Margolles-Clark E., Tenkanen M., Soederlund H. and Penttilae M. 1996. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur. J. Biochem. 237: 553-560.Google Scholar
  18. Moriyoshi K., Ohmoto T., Ohe T. and Sakai K. 1999. Purification and characterization of an esterase involved in cellulose acetate degradation by Neisseria sicca SB. Biosci. Biotechnol. Biochem. 63: 1708-1713.Google Scholar
  19. Poutanen K., Sundberg M., Korte H. and Puls J. 1990. Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl. Microbiol. Biotechnol. 33: 506-510.Google Scholar
  20. Puls J., Tenkanen M., Korte H.E. and Poutanen K. 1991. Products of beechwood acetyl-4-0-methylglucuronoxylan hydrolysis by a xylanase and an acetyl xylan esterase. Enzyme Microbiol. Technol. 13: 483-486.Google Scholar
  21. Reicher F. and Corréa J.B.C. 1984. Location of O-acetyl groups in the acidic D-xylan of Mimosa scabrella (bratinga). A study of O-acetyl group migration. Carbohydr. Res. 135: 129-140.Google Scholar
  22. Saake B., Patt R., Puls J., Linow K.J. and Philipp B. 1992. Molarmass distribution of celluloses. Makromol. Chem. Macromol. Symp. 61: 219-238.Google Scholar
  23. Saake B., Altaner C. and Puls J. 2002a. Mode of action of purified Aspergillus niger acetyl esterase towards different acetylated xylans. Biotechnology for improving pulp and paper processing COST E23 28-29.11.2002 Grenoble/France, Centre Technique du paper, Vol. 8.Google Scholar
  24. Saake B., Puls J. and Wagenknecht W. 2002b. Endoglucanase fragmentation of cellulose sulphates derived from different synthesis concepts. Carbohydr. Polym. 48: 7-14.Google Scholar
  25. Teleman A., Lundqvist J., Tjerneld F., Stalbrand H. and Dahlman O. 2000. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing H-1 and C-13 NMR spectroscopy.Carbohydr. Res. 329: 807-815.Google Scholar
  26. Tenkanen M. and Poutanen K. 1992. Significance of esterases in the degradation of xylans. In Visser J., Beldman G., Kusters-van Someren M.A. and Voragen A.G.J. (eds.) Xylans and Xylanases. Elsevier, New York, pp. 203-212.Google Scholar
  27. Tenkanen M., Puls J., Rättö M. and Viikari L. 1993. Enzymic deacetylation of galactoglucomannans. Appl. Microbiol. Biotechnol. 39: 159-165.Google Scholar
  28. Tenkanen M., Eyzaguirre J., Isoniemi R., Faulds C.B. and Biely P. Comparison of catalytic properties of acetyl xylan esterases from three carbohydrate esterase families. ACS Symp. Ser. (in press).Google Scholar
  29. Treece L.C. and Johnson G.I. 1993. Cellulose acetate. Chem. Ind. 49: 224-241.Google Scholar
  30. Tsujibo H., Ohtsuki T., Iio T., Yamazaki I., Miyamoto K., Sugiyama M. and Inamori Y. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Institute for Wood Chemistry and Chemical Technology of WoodFederal Research Centre for Forestry and Forest ProductsHamburgGermany

Personalised recommendations