Journal of Chemical Ecology

, Volume 29, Issue 4, pp 961–976 | Cite as

Cuticular Hydrocarbons of Drosophila birchii and D. serrata: Identification and Role in Mate Choice in D. serrata

  • Ralph W. Howard
  • Larry L. Jackson
  • Heidi Banse
  • Mark W. Blows


The cuticular hydrocarbon compositions of two sympatric species of Australian Drosophila in the montium subgroup of the melanogaster group that use cuticular hydrocarbons in mate recognition have been characterized. Drosophila birchii has 34 components in greater than trace amounts, with a carbon number range of C20 to C33. Drosophila serrata has 21 components above trace level and a carbon number range of C24 to C31. These two species share eight hydrocarbon components, with all but two of them being monoenes. For both species, the (Z)-9-monoenes are the predominant positional isomer. The hydrocarbons of D. birchii are n-alkanes, n-alkenes (Z)-5-, (Z)-7-, (Z)-9-, and (Z)-11-), low to trace levels of homologous (Z,Z)-7,11- and (Z,Z)-9,13-dienes; and trace amounts of (Z,Z)-5,9-C25:2, a major component of D. serrata. Only one methyl branched hydrocarbon was detected (2-methyl C28), and it occurred at very low levels. The hydrocarbons of D. serrata are dominated by a homologous series of (Z,Z)-5,9-dienes, and notably, are characterized by the apparent absence of n-alkanes. Homologous series of (Z)-5-, (Z)-7-, and (Z)-9-alkenes are also present in D. serrata as well as 2-methyl alkanes. Drosophila serrata females display strong directional mate choice based on male cuticular hydrocarbons and prefer D. serrata males with higher relative abundances of the 2-methyl alkanes, but lower relative abundances of (Z,Z)-5,9-C24:2 and (Z)-9-C25:1.

Hydrocarbons pheromones sexual selection sibling species mass spectra dienes monoenes 2-methylalkanes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J. 1986. The Statistical Analysis of Composition Data. Chapman and Hall, London, United Kingdom.Google Scholar
  2. Antony, C. and Jallon, J.-M. 1982. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 28:873–880.Google Scholar
  3. Ayala, F. J. 1965. Sibling species of the Drosophila serrata group. Evolution 19:538–545.Google Scholar
  4. Bartelt, R. J., Armold, M. T., Schaner, A. M., and Jackson, L. L. 1986. Comparative analysis of cuticular hydrocarbons in the Drosophila virilis species group. Comp. Biochem. Physiol. 83B:731–742.Google Scholar
  5. Blomquist, G. J., Toolson, E. C., and Nelson, D. R. 1985. Epicuticular hydrocarbons of Drosophila pseudoobscura (Diptera, Drosophilidae). Identification of unusual alkadienes and alkatriene positional isomers. Insect Biochem. 15:25–34.Google Scholar
  6. Blows, M. W. 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. B. 269:1113–1118.Google Scholar
  7. Blows, M. W. and Allan, R. A. 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152:826–837.Google Scholar
  8. Boake, C. R. B., DeAngelis, M. P., and Andreadis, D. K. 1997. Is sexual selection and species recognition a continuum? Mating behaviour of the stalk-eyed fly Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 94:12442–12445.Google Scholar
  9. Buckley, S. H., Tregenza, T., and Butlin, R. K. 1997. Speciation and signal trait genetics. Trends Ecol. Evol. 12:299–301.Google Scholar
  10. Cobb, M. and Jallon, J.-M. 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39:1058–1067.Google Scholar
  11. Coyne, J. A. and Charlesworth, B. 1997. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Evolution 145:1015–1030.Google Scholar
  12. Coyne, J. A., Crittenden, A. P., and Mah, K. 1994. Genetics of a pheromone difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464.Google Scholar
  13. Descoins, C., Lalannecassou, B., Malosse, C., and Milat, M. L. 1986. Analysis of the sex pheromone produced by the virgin female of Moscis-Latipes (Guenee), Noctuidae, Cataocalinae, from Guadeloupe (French Antilla). C.R. Acad. Sci. III 302:509–512.Google Scholar
  14. Etges, W. J. and Jackson, L. L. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VI. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:2125–2149.Google Scholar
  15. Ewing, A. W. and Miyan, J. A. 1986. Sexual selection, sexual isolation and the evolution of song in the Drosophila repleta group of species. Anim. Behav. 34:421–429.Google Scholar
  16. Ferveur, J.-F. and Sureau, G. 1996. Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. R. Soc. London B 263:967–973.Google Scholar
  17. Francis, G. W. and Veland, K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. 219:379–384.Google Scholar
  18. Gibbs, A. G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48:391–400.Google Scholar
  19. Harrison, A. G. 1983. Chemical Ionization Mass Spectrometry. CRC Press, Boca Raton, Florida.Google Scholar
  20. Higgie, M., Chenoweth, S., and Blows, M. W. 2000. Natural selection and the reinforcement of mate recognition. Science 290:519–521.Google Scholar
  21. Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226: in D. W. Stanley-Samuelson and D. R. Nelson (Eds.). Insect lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln, Nebraska.Google Scholar
  22. Howard, R. W., McDaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.Google Scholar
  23. Howard, R. W., McDaniel, C. A., Nelson, D. R., and Blomquist, G. J. 1980. Chemical ionization mass spectrometry. Application to insect-derived cuticular alkanes. J. Chem. Ecol. 6:609–623.Google Scholar
  24. Jackson, L. L. and Bartelt, R. J. 1986. Cuticular hydrocarbons of Drosophila virilis: comparison by age and sex. Insect Biochem. 16:433–439.Google Scholar
  25. Jackson, L. L. and Blomquist, G. J. 1976. Insect waxes, pp. 201–233, in Chemistry and Biochemistry of Natural Waxes. P. E. Kolattukudy (ed). Elvesier, Amsterdam.Google Scholar
  26. Jackson, L. L., Arnold, M. T., and Blomquist, G. J. 1981. Surface lipids of Drosophila melanogaster: comparison of the lipids from female and male wild type and sex-linked yellow mutant. Insect Biochem. 11:87–91.Google Scholar
  27. Jallon, J.-M. 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14:441–477.Google Scholar
  28. Jallon, J.-M. and David, J. R. 1987. Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41:294–302.Google Scholar
  29. Krokos, F. D., Konstantopoulou, M. A., and Mazomenos, B. E. 2001. Alkadienes and alkenes, sex pheromone components of the almond seed wasp Eurytoma amygdali. J. Chem. Ecol. 27:2169–2181.Google Scholar
  30. Markow, T. A. and Toolson, E. C. 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis, In J. S. F. Barker, W. T. Starmer and R. J. MacIntyre (Eds.). Ecological and Evolutionary Genetics of Drosophila. Plenum Press, New York, pp. 315–331.Google Scholar
  31. Nakanishi, K. 1962. Infrared Absorption Spectroscopy-Practical. Holden-Day, San Francisco, California.Google Scholar
  32. Nelson, D. R. 1978. Long-chain methyl-branched hydrocarbons: occurrence, biosynthesis and function. Adv. Insect Physiol. 13:1–33.Google Scholar
  33. Stennett, M. D. and Etges, W. J. 1997. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23:2803–2824.Google Scholar
  34. Swedenborg, P. D. and Jones, R. L. 1992. (Z)-4-Tridecenal, a pheromonally active air oxidation product from a series of (Z,Z)-9,13 dienes in Macrocentrus grandii Goidanich (Hymenoptera: Braconidae). J. Chem. Ecol. 18:1913–1931.Google Scholar
  35. Toolson, E. C. and Kuper-Simbron, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal acclimation ability. Evolution 43:468–473.Google Scholar
  36. Toolson, E. C., Markow, T. A., Jackson, L. L., and Howard, R. W. 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 83:1165–1176.Google Scholar
  37. Vicenti, M., Guiglielmetti, G., Cassani, G., and Tonini, C. 1987. Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal. Chem. 59:694–699.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Ralph W. Howard
    • 1
  • Larry L. Jackson
    • 2
  • Heidi Banse
    • 2
  • Mark W. Blows
    • 3
  1. 1.USDA-ARSManhattanUSA
  2. 2.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  3. 3.Department of Zoology and EntomologyUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations