Structural roughness and interface strain properties in Si/SiO2/Poly-Si1−xGe x tri-layer system with ultrathin oxide

  • L. L. Ye
  • A. Thölén
  • A. P. Jacob
  • T. Myrberg
  • O. Nur
  • M. Willander


We have explored the microstructure and local interface strain in the poly-Si1−xGe x /SiO2/Si tri-layer system with ultrathin oxides. High-resolution transmission electron microscopy (HRTEM) and high-resolution X-ray diffraction rocking curves (HR-RC) and two-dimensional reciprocal space mapping (2D-RSM) were the main characterization tools. The poly-Si1−xGe x /SiO2/Si structures have x=0, 0.2, and 0.35 for ultrathin oxides (2.0–3.0 nm). The result shows that for the adopted growth process, the poly grain size depends very strongly on the Ge concentration, and it increases with increasing Ge mole fraction. In turn, this increase of the grain size in the poly-Si1−xGe x /SiO2/Si reduces the strain in the film, which then affects the interface strain at the lower SiO2/Si interface. In addition, the presence of defects at the SiO2/Si interface was found to be greater for samples with no local interface strain.


Grain Size Microstructure Transmission Electron Microscopy Mole Fraction HRTEM 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bauza, in “Handbook of Surfaces and Interfaces of Materials”, edited by Hari Singh Nalwa (Academic Press, San Diego, USA, 1 2001) p. 115.Google Scholar
  2. 2.
    E. A. Irene, Solid-State Electron. 45 (2001) 1207.Google Scholar
  3. 3.
    J. T. Fitch, C. H. Bjorkman, G. Lucovsky, F. H. Pollak and X. Yin, J. Vac. Sci. Technol. B 7 (1989) 775.Google Scholar
  4. 4.
    J. Li and T. P. Ma, J. Appl. Phys. 62 (1987) 4212; K. Rais, G. Ghubaudo and F. Balestra, Phys. Stat. Sol. (a) 146 (1994) 853.Google Scholar
  5. 5.
    T. Yamanaka, S. J. Fang, H.-C. Lin, J. P. Snyder and C. R. Helms, IEEE Electron Device Lett. 17 (1996) 178.Google Scholar
  6. 6.
    R. P. Vasquez and A. Madhukar, Appl. Phys. Lett. 47 (1985) 998.Google Scholar
  7. 7.
    D. J. Dumin, S. K. Mopuri, S. Vachinathan, R. S. Scott, R. Subramoniam and T. G. Lewis, IEEE Trans. Electron Devices 42 (1995) 760.Google Scholar
  8. 8.
    D. J. Dimaria, Appl. Phys. Lett. 68 (1996) 3004.Google Scholar
  9. 9.
    T. Yang and K. Saraswat, IEEE Trans. Electron Devices 47 (2000) 846.Google Scholar
  10. 10.
    K. Eriguchi, Y. Harada and M. Niwa, J. Appl. Phys. 87 (2000) 1990.Google Scholar
  11. 11.
    K.-S. Chang-Liao and L.-C. Chen, J. Vac. Sci. Technol. B 15 (1997) 942.Google Scholar
  12. 12.
    Y. H. Ha, S. Kim, S. Y. Lee, J. H. Kim, D. H. Baek, H. K. Kim and D. W. Moon, Appl. Phys. Lett. 74 (1999) 3510.Google Scholar
  13. 13.
    F. N. Cubaynes, P. A. Stolk, J. Verhoeven, F. Roozeboom and P. H. Woerlee, Mater. Sci. Semicond. Process. 4 (2001) 351.Google Scholar
  14. 14.
    T. Emoto, K. Akimoto, Y. Ishikawa, A. Ichimiya and A. Tanikawa, Thin Solid Films 369 (2000) 281.Google Scholar
  15. 15.
    W. Bran and H. Kuhlenbeck, Surf. Sci. 180 (1987) 279.Google Scholar
  16. 16.
    H. S. Chang, S. Choi, H. Yang, K.-Y. Min, D. W. Moon, H.-I. Lee and H. Hwang, Appl. Phys. Lett. 80 (2002) 386.Google Scholar
  17. 17.
    Y. Yamashita, Y. Nakato, H. Kato, Y. Nishioka, H. Kobayashi, Appl. Surf. Sci. 117/118 (1997) 176.Google Scholar
  18. 18.
    Berbezier, B. Gallas, A. Ronda and J. Derrien, Surf. Sci. 412/413 (1998) 415.Google Scholar
  19. 19.
    S. M. Goodnick, D. K. Ferry, C. W. Wilmson, Z. Liliental, D. Fathy and O. L. Krivanek, Phys. Rev. B 32 (1985) 8171.Google Scholar
  20. 20.
    D. Cherns, C. J. Kiely and A. R. Preston, Ultramicroscopy 24 (1988) 355.Google Scholar
  21. 21.
    C. J. Humphreys, D. J. Eaglesham, D. M. Maher and H. L. Fraser, ibid. 26 (1988) 13.Google Scholar
  22. 22.
    D. Cherns, A. R. Preston, C. J. Rossouw and D. C. Houghton, Philos. Mag. A 64 (1991) 597.Google Scholar
  23. 23.
    X. F. Duan, Ultramicroscopy 41 (1992) 249.Google Scholar
  24. 24.
    F. Banhart and N. Nagel, Philos. Mag. A 70 (1994) 341.Google Scholar
  25. 25.
    P. F. Fewster, Semicond. Sci. Technol. 8 (1993) 1915.Google Scholar
  26. 26.
    P. Kidd, P. F. Fewster, N. L. Andrew and D. J. Dunstan, in Proceedings of Microscopy of Semiconducting Materials Conference, Inst. Phys. Conf. Ser. 132: Section 9, (1993) 585.Google Scholar
  27. 27.
    A. P. Jacob, T. Myrberg, O. Nur, M. Willander, P. Lundgren, E. Ö. SeinbÖrnsson, L. L. Ye, A. ThÖlÉn and M. Caymax, Semicond. Sci. Technol. 17 (2002) 942.Google Scholar
  28. 28.
    C. Salm, D. T. Van Veen, D. J. Gravesteijn, J. Holleman and P. H. Woerlee, J. Electrochem. Soc. 144 (1997) 2665.Google Scholar
  29. 29.
    W. C. Lee, T. J. King and C. Hu, IEEE Electron Device Lett. 20 (1999) 9.Google Scholar
  30. 30.
    M. Y. A. Yousif, M. Willander, R. Lundgren and M. Caymax, Semicond. Sci. Technol. 16 (2001) 478.Google Scholar
  31. 31.
    V. M. Koleshko, V. F. Belitsky and I. V. Kiryshin, Thin Solid Films 162 (1988) 365.Google Scholar
  32. 32.
    V. M. Koleshko, V. F. Belitsky and I. V. Kiryushin, ibid. 142 (1986) 199.Google Scholar
  33. 33.
    T. Kamins, in “Polycrystalline Silicon for Integrated Circuits and Displays”, 2nd edn. (Kluwer Academic Publishers, Boston, 1998) p. 72.Google Scholar
  34. 34.
    D. P. Joshi and K. Sen, Sol. Cells 9 (1983) 261.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • L. L. Ye
    • 1
  • A. Thölén
    • 1
  • A. P. Jacob
    • 2
  • T. Myrberg
    • 2
  • O. Nur
    • 2
  • M. Willander
    • 2
  1. 1.Microscopy and Microanalysis, Department of Experimental PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Laboratory of Physical Electronics and Photonics, Department of Physics, Microtechnology Center at Chalmers (MC2)Chalmers University of TechnologyGöteborgSweden

Personalised recommendations