Advertisement

Journal of Mathematical Sciences

, Volume 115, Issue 4, pp 2542–2553 | Cite as

Notions of Relative Interior in Banach Spaces

  • J. Borwein
  • R. Goebel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Borwein and Q. Zhu, “Limiting convex examples for nonconvex subdifferential calculus,” J. Convex Anal., 5, No. 2, 221–235 (1998).Google Scholar
  2. 2.
    J. M. Borwein and A. S. Lewis, “Partially finite convex programming. I. Quasi relative interiors and duality theory,” Math. Program., 57,15–48 (1992).Google Scholar
  3. 3.
    J. M. Borwein and J. D. Vanderver.,“Banach spaces which admit support sets,” Proc. Amer. Math. Soc., 124,751–756 (1996).Google Scholar
  4. 4.
    J. M. Borwein, “Proper efficient points for maximizations with respect to cones,” SIAM J. Control Optimization,15, 57–63 (1977).Google Scholar
  5. 5.
    J. M. Borwein and A. S. Lewis, “Partially nite convex programming in l 1: entropy maximization,” SIAM J.Optim., 3, 248–267 (1993).Google Scholar
  6. 6.
    J. M. Borwein and D. W. Tingley, “On supportless convex sets, ” Proc. Amer. Math. Soc., 124, 471–476 (1985).Google Scholar
  7. 7.
    F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley (1983).Google Scholar
  8. 8.
    M. Fabian, P. Habala, P. Hajek, V. Montesinos Santalucia, J. Pelant, and V. Zizler, Functional Analysis and In nite-Dimensional Geometry, Springer-Verlag, New York–Berlin–Heidelberg (2001).Google Scholar
  9. 9.
    V. P. Fonf, “On supportless convex sets in incomplete normed spaces,” Proc. Amer. Math. Soc., 120, No. 4, 1173–1176 (1994).Google Scholar
  10. 10.
    M. S. Gowda and M. Teboulle, “A comparison of constraint qualifications in infi nite-dimensional convex programming,” SIAM J.Control Optimization, 28, 925–935 (1990).Google Scholar
  11. 11.
    R. B. Holmes, Geometric Functional Analysis and Its Applications, Springer-Verlag, New York (1975).Google Scholar
  12. 12.
    V. Jeyakumar and H.Wolkowicz, “Generalizations of Slater 's constraint quali fication for infinite convex programs,” Math. Program., 57, 85–101 (1992).Google Scholar
  13. 13.
    V. Klee, “Convex sets in linear spaces,” Duke Math. J., 18, 433–466 (1951).Google Scholar
  14. 14.
    R. R. Phelps, “Some topological properties of support points of convex sets,” Isr. J. Math., 13, 327–336 (1972).Google Scholar
  15. 15.
    R. T. Rockafellar, Convex Analysis, Princeton University Press (1970).Google Scholar
  16. 16.
    R. T. Rockafellar, Conjugate Duality and Optimization, CBMS-NSF Regional Conf. Appl. Math., 16, SIAM, Philadelphia (1974).Google Scholar
  17. 17.
    I. Singer, Bases in Banach Spaces, II, Springer-Verlag, Berlin–Heidelberg–New York (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • J. Borwein
  • R. Goebel

There are no affiliations available

Personalised recommendations