Studia Logica

, Volume 73, Issue 1, pp 21–49 | Cite as

A Proof-theoretical Analysis of Semiconstructive Intermediate Theories

  • Mauro Ferrari
  • Camillo Fiorentini
Article
  • 33 Downloads

Abstract

In the 80's Pierangelo Miglioli, starting from motivations in the framework of Abstract Data Types and Program Synthesis, introduced semiconstructive theories, a family of “large subsystems” of classical theories that guarantee the computability of functions and predicates represented by suitable formulas. In general, the above computability results are guaranteed by algorithms based on a recursive enumeration of the theorems of the whole system. In this paper we present a family of semiconstructive systems, we call uniformly semiconstructive, that provide computational procedures only involving formulas with bounded complexity. We present several examples of uniformly semiconstructive systems containing Harrop theories, induction principles and some well-known predicate intermediate principles. Among these, we give an account of semiconstructive and uniformly semiconstructive systems which lie between Intuitionistic and Classical Arithmetic and we discuss their constructive incompatibility.

intermediate semiconstructive systems information extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Avellone, A., M. Ferrari, and C. Fiorentini, ‘A formal framework for synthesis and verification of logic programs’, In K.-K. Lau, editor, Logic Based Program Synthesis and Transformation, 10th International Workshop, LOPSTR 2000, Selected Papers, vol. 2042 of Lecture Notes in Computer Science, pp. 1–17, Springer-Verlag, 2001.Google Scholar
  2. [2]
    Avellone, A., M. Ferrari, and P. Miglioli, ‘Synthesis of programs in abstract data types’, In 8th International Workshop on Logic-based Program Synthesis and Transformation, vol. 1559 of Lecture Notes in Computer Science, pp. 81–100, Springer-Verlag, 1999.Google Scholar
  3. [3]
    Avellone, A., C. Fiorentini, P. Mantovani, and P. Miglioli, ‘On maximal intermediate predicate constructive logics’, Studia Logica 57(2–3):373–408, 1996.Google Scholar
  4. [4]
    Bertoni, A., G. Mauri, P. Miglioli, and M. Ornaghi, ‘Abstract data types and their extension within a constructive logic’, In G. Kahn, D.B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, vol. 173 of Lecture Notes in Computer Science, pp. 177–195. Springer-Verlag, 1984.Google Scholar
  5. [5]
    Buss, S., and G. Mints, ‘The complexity of the disjunction and existential properties in intuitionistic logic’, Annals of Pure and Applied Logic 99(3):93–104, 1999.Google Scholar
  6. [6]
    Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford University Press, 1997.Google Scholar
  7. [7]
    Ferrari, M., Strongly Constructive Formal Systems, PhD thesis, Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Italy, 1997. Available at http://homes.dsi.unimi.it/~ferram.Google Scholar
  8. [8]
    Ferrari, M., C. Fiorentini, and P. Miglioli, ‘Goal oriented information extraction in uniformly constructive calculi’, In Proceedings of WAIT'99: Workshop Argentino de Informática Teórica, pp. 51–63, Sociedad Argentina de Informática e Investigación Operativa, 1999.Google Scholar
  9. [9]
    Ferrari, M., C. Fiorentini, and P. Miglioli, ‘Extracting information from intermediate T-systems’, Technical Report 252–00, Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Italy, 2000. Available at http://homes.dsi.unimi.it/~ferram.Google Scholar
  10. [10]
    Ferrari, M., and P. Miglioli, ‘A method to single out maximal propositional logics with the disjunction property I’, Annals of Pure and Applied Logic 76:1–46, 1995.Google Scholar
  11. [11]
    Ferrari, M., and P. Miglioli, ‘A method to single out maximal propositional logics with the disjunction property II’, Annals of Pure and Applied Logic 76:117–168, 1995.Google Scholar
  12. [12]
    Ferrari, M., P. Miglioli, and M. Ornaghi, ‘Foundations of uniformly constructive and uniformly semiconstructive formal systems’, Technical Report 256–00, Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Italy, 2000. Available at http://homes.dsi.unimi.it/~ferram.Google Scholar
  13. [13]
    Gabbay, D.M., Semantical Investigations in Heyting's Intuitionistic Logic, Reidel, Dordrecht, 1981.Google Scholar
  14. [14]
    Ghilardi, S., and P. Miglioli, ‘On canonicity and strong completeness conditions in intermediate propositional logics’, Studia Logica 63(3):353–385, 1999.Google Scholar
  15. [15]
    GÖrnemann, S., ‘A logic stronger than intuitionism’, Journal of Symbolic Logic 36:249–261, 1971.Google Scholar
  16. [16]
    Kleene, S.C., ‘On the interpretation of intuitionistic number theory’, Journal of Symbolic Logic 10(4):109–124, 1945.Google Scholar
  17. [17]
    Kreisel, G., and H. Putnam, ‘Eine Unableitsbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül’, Archiv für Mathematische Logik und Graundlagenforschung 3:74–78, 1957.Google Scholar
  18. [18]
    Miglioli, P., ‘An infinite class of maximal intermediate propositional logics with the disjunction property’, Archive for Mathematical Logic 31(6):415–432, 1992.Google Scholar
  19. [19]
    Miglioli, P., U. Moscato, and M. Ornaghi, ‘Constructive theories with abstract data types for program synthesis’, In D.G. Skordev, editor, Mathematical Logic and its Applications, pp. 293–302, Plenum Press, New York, 1987.Google Scholar
  20. [20]
    Miglioli, P., U. Moscato, and M. Ornaghi, ‘Semi-constructive formal systems and axiomatization of abstract data types’, In J. Diaz and F. Orejas, editors, TAP-SOFT'89, vol. 351 of Lecture Notes in Computer Science, pp. 337–351, Springer-Verlag, 1989.Google Scholar
  21. [21]
    Miglioli, P., U. Moscato, and M. Ornaghi, ‘Abstract parametric classes and abstract data types defined by classical and constructive logical methods’, The Journal of Symbolic Computation 18(1):41–81, 1994.Google Scholar
  22. [22]
    Miglioli, P., and M. Ornaghi, ‘A logically justified model of computation I’, Fundamenta Informaticae IV(1):151–172, 1981.Google Scholar
  23. [23]
    Miglioli, P., and M. Ornaghi, ‘A logically justified model of computation II’, Fundamenta Informaticae IV(2):277–341, 1981.Google Scholar
  24. [24]
    Miglioli, P., and M. Ornaghi, ‘Constructive proofs and logical computations’, Počítače umelá inteligencia 1(5):369–388, 1982.Google Scholar
  25. [25]
    Odifreddi, P., Classical Recursion Theory, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-Holland, 1989.Google Scholar
  26. [26]
    Ono, H., ‘Some results on the intermediate logics’, Publications of the Research Institute for Mathematical Sciences, Kyoto University 8:117–130, 1972.Google Scholar
  27. [27]
    Schwichtenberg, H., ‘Proofs as programs’, In P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory. A selection of papers from the Leeds Proof Theory Programme 1990, pp. 81–113, Cambridge University Press, 1993.Google Scholar
  28. [28]
    Tatsuta, M., ‘Program synthesis using realizability’, Theoretical Computer Science 90:309–353, 1991.Google Scholar
  29. [29]
    Troelstra, A.S., editor, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, vol. 344 of Lecture Notes in Mathematics, Springer-Verlag, 1973.Google Scholar
  30. [30]
    Troelstra, A.S., and H. Schwichtenberg, Basic Proof Theory, volume 43 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1996.Google Scholar
  31. [31]
    Voronkov, A.A., ‘Deductive program synthesis and Markov's principle’, In L. Budach, R.G. Bukharajev, and O.B. Lupanov, editors, Fundamentals of Computation Theory, pp. 479–482, International Conference FCT'87, Kazan, USSR, Springer-Verlag, 1987.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mauro Ferrari
    • 1
  • Camillo Fiorentini
    • 1
  1. 1.Dipartimento di Scienze dell'InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations