, Volume 117, Issue 2–3, pp 165–177 | Cite as

The Modifier of mdg4 Locus in Drosophila: Functional Complexity is Resolved by trans Splicing

  • Rainer Dorn
  • Veiko Krauss


The modifier of mdg4 (mod(mdg4)) gene of Drosophila melanogaster has been identified in many different genetic assays. It has been independently identified through mutations isolated for their effects on position effect variegation (PEV), the properties of insulator sequences, correct pathfinding of growing nerve cells, meiotic pairing of chromosomes, or apoptosis. Molecular analysis of the mod(mdg4) locus revealed that it encodes a family of at least 26 protein isoforms. Inspired by the fact that some mod(mdg4) transcripts are encoded by both antiparallel DNA strands, it was shown that mRNA trans splicing is the mechanism used by this locus to produce mature transcripts. All Mod(mdg4) protein isoforms share a common N-terminal region of 402 amino acids, which includes the conserved BTB/POZ domain. However, the isoforms differ in their C-terminal ends. Most of the C-termini contain a conserved Cys2His2 protein motif, which we have named the FLYWCH motif. Genetic and immunological data indicate that mod(mdg4) encodes a family of related chromatin proteins. Recent results indicate a functional correlation between the large number of different isoforms and the pleiotropic mutant phenotypes of most mod(mdg4) mutations. We discuss the putative function of Mod(mdg4) proteins as chromatin modulators involved in higher order chromatin domains. We also provide evidence for the evolutionary conservation of several of the isoforms and the unusual structure of the locus.

BTB/POZ domain chromatin insulators chromatin structure FLYWCH motif mod(mdg4) molecular evolution position effect variegation trans splicing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, K.F., C.K. Engel & G.G. Prive, 1998. Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. USA 95: 12123-12128.Google Scholar
  2. Aravind, L. & G. Subramanian, 1999. Origin of multicellular eukaryotes - insights from proteome comparisons. Curr. Opin. Genet. Dev. 9: 688–694.Google Scholar
  3. Bardwell, V.J. & R. Treisman, 1994. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8: 1664-1677.Google Scholar
  4. Bell, A.C., A.G. West & G. Felsenfeld, 2001. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 5503: 447–450.Google Scholar
  5. Benyajati, C., L. Mueller, N. Xu, M. Pappano, J. Gao, M. Mosammaparast, D. Conklin, H. Granok, C. Craig & S. Elgin, 1997. Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucl. Acid. Res. 25: 3345-3353.Google Scholar
  6. Bhat, K.M., G. Farkas, F. Karch, H. Gyurkovics, J. Gausz & P. Schedl, 1996. The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division. Development 122: 1113-1124.Google Scholar
  7. Büchner, K., P. Roth, G. Schotta, V. Krauss, H. Saumweber, G. Reuter & R. Dorn, 2000. Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics 155: 141–157.Google Scholar
  8. Collins, T., J.R. Stone & A.J. Williams, 2001. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 21: 3609-3615.Google Scholar
  9. Corces, V.G. & G. Felsenfeld, 2000. Chromatin boundaries, pp. 278–299 in Chromatin Structure and Gene expression, edited by S.C.R. Elgin & J.L. Workman. Oxford University Press, New York.Google Scholar
  10. Dalby, B., A.J. Pereira & L.S. Goldstein, 1995. An inverse PCR screen for the detection of P element insertions in cloned genomic intervals in Drosophila melanogaster. Genetics 139: 757–766.Google Scholar
  11. Davis, T., J. Kurihara & D. Yamamoto, 2000. Genomic organisation and characterisation of the neural sex-determination gene fruitless (fru) in the Hawaiian species Drosophila heteroneura. Gene 246: 143–149.Google Scholar
  12. DiBello, P.R., D.A. Withers, C.A. Bayer, J.W. Fristrom & G.M. Guild, 1991. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129: 385–397.Google Scholar
  13. Dorn, R., G. Reuter & A. Loewendorf, 2001. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl. Acad. Sci. USA 98: 9724-9729.Google Scholar
  14. Dorn, R., J. Szidonya, G. Korge, M. Sehnert, H. Taubert, E. Archoukieh, B. Tschiersch, H. Morawietz, G. Wustmann, G. Hoffmann et al., 1993a. P transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics 133: 279–290.Google Scholar
  15. Dorn, R., V. Krauss, G. Reuter & H. Saumweber, 1993b. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc. Natl. Acad. Sci. USA 90: 11376-11380.Google Scholar
  16. Dorsett, D., 1999. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr. Opin. Genet. Dev. 9: 505–514.Google Scholar
  17. Eul, J.,M. Graessmann & A. Graessmann, 1995. Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 14: 3226-3235.Google Scholar
  18. Farkas, G., J. Gausz, M. Galloni, G. Reuter, H. Gyurkovics & F. Karch, 1994. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371: 806–808.Google Scholar
  19. Finta, C. & P.G. Zaphiropoulos, 2002. Intergenic mRNA Molecules Resulting from trans-splicing. J. Biol. Chem. 277: 5882-5890.Google Scholar
  20. Gause, M., P. Morcillo & D. Dorsett, 2001. Insulation of enhancer- promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairywing and modifier of mdg4 proteins. Mol. Cell. Biol. 21: 4807-4817.Google Scholar
  21. Gdula, D.A., T.I. Gerasimova & V.G. Corces, 1996. Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila. Proc. Natl. Acad. Sci. USA 93: 9378-9383.Google Scholar
  22. Georgiev, P.G. & T.I. Gerasimova, 1989. Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol. Gen. Genet. 220: 121–126.Google Scholar
  23. Gerasimova, T.I. & V.G. Corces, 1996. Boundary and insulator elements in chromosomes. Curr. Opin. Genet. Dev. 6: 185–192.Google Scholar
  24. Gerasimova, T.I. & V.G. Corces, 1998. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92: 511–521.Google Scholar
  25. Gerasimova, T.I. & V.G. Corces, 2001. Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu. Rev. Genet. 35: 193–208.Google Scholar
  26. Gerasimova, T.I., D.A. Gdula, D.V. Gerasimov, O. Simonova & V.G. Corces, 1995. A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82: 587–97.Google Scholar
  27. Geyer, P.K., C. Spana & V.G. Corces, 1986. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 10: 2657-2662.Google Scholar
  28. Ghosh, D., T.I. Gerasimova & V.G. Corces, 2001. Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function. EMBO J. 20: 2518-2527.Google Scholar
  29. Gorczyca, M., E. Popova, X.X. Jia & V. Budnik, 1999. The gene mod(mdg4) affects synapse specificity and structure in Drosophila. J. Neurobiol. 39: 447–460.Google Scholar
  30. Granok, H., B.A. Leibovitch, C.D. Shaffer & S.C.R. Elgin, 1995. Chromatin. Ga-ga over GAGA factor. Curr. Biol. 5: 238–241.Google Scholar
  31. Greenberg, A.J. & P. Schedl, 2001. GAGA factor isoforms have distinct but overlapping functions in vivo. Mol. Cell. Biol. 21: 8565-8574.Google Scholar
  32. Harvey, A.J., A.P. Bidwai & L.K. Miller, 1997. Doom, a product of the Drosophila mod(mdg4) gene, induces apoptosis and binds to baculovirus inhibitor-of-apoptosis proteins. Mol. Cell. Biol. 17: 2835-2843.Google Scholar
  33. Human Genome Sequencing Consortium, 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.Google Scholar
  34. Ito, H., K. Fujitani, K. Usui, K. Shimizu-Nishikawa, S. Tanaka & D. Yamamoto, 1996. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc. Natl. Acad. Sci. USA 93: 9687-9692.Google Scholar
  35. Labrador, M., F. Mongelard, P. Plata-Rengifo, E.M. Baxter, V.G. Corces & T.I. Gerasimova, 2001. Protein encoding by both DNA strands. Nature 409: 1000.Google Scholar
  36. Li, B.L., X.L. Li, Z.J. Duan, O. Lee, S. Lin, Z.M. Ma, C.C. Chang, X.Y. Yang, J.P. Park, T.K. Mohandas, W. Noll, L. Chan & T.Y. Chang, 1999a. Human acyl-CoA: cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J. Biol. Chem. 274: 11060-11071.Google Scholar
  37. Li, X., H. Peng, D.C. Schultz, J.M. Lopez-Guisa, F.J. Rauscher III & R. Marmorstein, 1999b. Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein. Cancer Res. 59: 5275-5282.Google Scholar
  38. Lintermann, K.G., G.E. Roth, K. King-Jones, G. Korge & M. Lehmann, 1998. Comparison of the GAGA factor genes of Drosophila melanogaster and Drosophila virilis reveals high conservation of GAGA factor structure beyond the BTB/POZ and DNA-binding domains. Dev. Gen. Evol. 208: 447–456.Google Scholar
  39. McKee, B.D., C.S. Hong & S. Das, 2000. On the roles of heterochromatin and euchromatin in meiosis in Drosophila: mapping chromosomal pairing sites and testing candidate mutations for effects on X-Y nondisjunction and meiotic drive inmale meiosis. Genetica 109: 77–93.Google Scholar
  40. Mishra, R.K., J. Mihaly, S. Barges, A. Spierer, F. Karch, K. Hagstrom, S.E. Schweinsberg & P. Schedl, 2001. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol. Cell. Biol. 21: 1311-1318.Google Scholar
  41. Morcillo, P., C. Rosen, M.K. Baylies & D. Dorsett, 1997. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Gen. Dev. 11: 2729-2740.Google Scholar
  42. Murphy, W.J., K.P. Watkins & N. Agabian, 1986. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell 47: 517–525.Google Scholar
  43. Mongelard, F., M. Labrador, E.M. Baxter, T.I. Gerasimova & V.G. Corces, 2002. Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 160: 1481-1487.Google Scholar
  44. Ohtsuki, S. & M. Levine, 1998. GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. Gen. Dev. 12: 3325-3330.Google Scholar
  45. Read, D., M.J. Butte, A.F. Dernburg, M. Frasch & T.B. Kornberg, 2000. Functional studies of the BTB domain in the Drosophila GAGA and Mod(mdg4) proteins. Nucl. Acid. Res. 28: 3864-3870.Google Scholar
  46. Reuter, G. & P. Spierer, 1992. Position effect variegation and chromatin proteins. Bioessays 14: 605–612.Google Scholar
  47. Ryner, L.C., S.F. Goodwin, D.H. Castrillon, A. Anand, A. Villella, B.S. Baker, J.C. Hall, B.J. Taylor & S.A. Wasserman, 1996. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87: 1079-1089.Google Scholar
  48. Soeller, W.C., C.E. Oh & T.B. Kornberg, 1993. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol. Cell. Biol. 12: 7961-7970.Google Scholar
  49. Spradling, A.C., D. Stern, A. Beaton, E.J. Rhem, T. Laverty, N. Mozden, S. Misra & G.M. Rubin, 1999. The Berkeley Drosophila Genome Project gene disruption project: single Pelement insertions mutating 25% of vital Drosophila genes. Genetics 153: 135–177.Google Scholar
  50. Strimmer, K. & A. von Haeseler, 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13: 964–969.Google Scholar
  51. Thatcher, J.D., A.P. Fernandez, L. Beaster-Jones, C. Haun & P.G. Okkema, 2001. The Caenorhabditis elegans peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. Dev. Biol. 229: 480–493.Google Scholar
  52. Tchurikov, N.A., T.I. Gerasimova, T.K. Johnson, N.I. Barbakar, A.L. Kenzior & G.P. Georgiev, 1989. Mobile elements and transposition events in the cut locus of Drosophila melanogaster. Mol. Gen. Genet. 219: 241–248.Google Scholar
  53. Wallrath, L.L., 1998. Unfolding the mysteries of heterochromatin. Curr. Opin. Genet. Dev. 8: 147–153.Google Scholar
  54. Wei, W. & M.D. Brennan, 2001. The gypsy insulator can act as a promoter-specific transcriptional stimulator. Mol. Cell. Biol. 21: 7714-7720.Google Scholar
  55. Weiler, K.S. & B.T. Wakimoto, 1995. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29: 577–605.Google Scholar
  56. Weiler, K.S. & B.T. Wakimoto, 2002. Suppression of heterochromatic gene variegation can be used to distinguish and characterize E(var) genes potentially important for chromosome structure in Drosophila melanogaster. Mol. Gen. Genomics 266: 922–932.Google Scholar
  57. Whelan, S. & N. Goldman, 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18: 691–699.Google Scholar
  58. Zhou, B., K. Hiruma, T. Shinoda & L.M. Riddiford, 1998. Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev. Biol. 203: 233–244.Google Scholar
  59. Zollman, S., D. Godt, G.G. Prive, J.L. Couderc & F.A. Laski, 1994. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl. Acad. Sci. USA 91: 10717-10721.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Rainer Dorn
    • 1
  • Veiko Krauss
    • 2
  1. 1.Institute of Genetics, BiologicumMartin Luther University HalleHalle
  2. 2.Department of GeneticsUniversity of LeipzigLeipzigGermany

Personalised recommendations