Journal of Low Temperature Physics

, Volume 131, Issue 3–4, pp 429–433 | Cite as

Nodal Structure of Unconventional Superconductors Determined by Thermal Conductivity

  • Koichi Izawa
  • Yuji Matsuda


To identify the gap structure of unconventional superconductors, spin-triplet Sr2RuO4, heavy fermion CeCoIn5, organic κ-(BEDT-TTF)2Cu(NCS)2 and borocarbide YNi2B2C, we measured the thermal conductivity in magnetic field rotated within the 2D plane with very high precision. On the basis of these results, we show that the gap functions of Sr2RuO4, CeCoIn5 and κ-(BEDT-TTF)2Cu(NCS)2 are most likely to be d(k)=Δ0^z(kx+iky)(cos ckz+α), dx2-y2 and dxy, respectively. We also demonstrate the presence of point nodes along the a- and b-axes in YNi2B2C.


Magnetic Field Thermal Conductivity Magnetic Material High Precision Point Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239(1991).Google Scholar
  2. 2.
    C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969(2000).Google Scholar
  3. 3.
    I. Vekhter et al., Phys. Rev. B 59, R9023(1999).Google Scholar
  4. 4.
    K. Maki et al., Physica C 341–348, 1647(2000).Google Scholar
  5. 5.
    H. Won and K. Maki, cond-mat/0004105.Google Scholar
  6. 6.
    H. Aubin et al., Phys. Rev. Lett. 78, 2624(1997).Google Scholar
  7. 7.
    K. Izawa et al., Phys. Rev. Lett. 86, 2653(2001).Google Scholar
  8. 8.
    K. Izawa et al., Phys. Rev. Lett. 87, 057002(2001).Google Scholar
  9. 9.
    K. Izawa et al., Phys. Rev. Lett. 88, 027002(2002).Google Scholar
  10. 10.
    K. Izawa et al., Phys. Rev. Lett., in press; cond-mat/0205178.Google Scholar
  11. 11.
    Y. Maeno, T. M. Rice, and M. Sigrist, Phys. Today 54, 42(2001).Google Scholar
  12. 12.
    S. Nishizaki et al., J. Low Temp. Phys. 117, 1581(1999).Google Scholar
  13. 13.
    K. Ishida et al., Phys. Rev. Lett. 84, 5387(2000).Google Scholar
  14. 14.
    M. E. Zhitomirsky and T. M. Rice, Phys. Rev. Lett. 87, 057001(2001).Google Scholar
  15. 15.
    H. Hegger et al., Phys. Rev. Lett. 84, 4986(2000).Google Scholar
  16. 16.
    C. Petrovic et al., J. Phys. Condens. Mat. 13, L337(2001).Google Scholar
  17. 17.
    R. Movshovich et al., Phys. Rev. Lett. 86, 5152(2001).Google Scholar
  18. 18.
    Y. Kohori et al., Phys. Rev. B 64, 134526(2001).Google Scholar
  19. 19.
    K. Kanoda, Physica C 282–287, 299(1997).Google Scholar
  20. 20.
    H. Elsinger et al., Phys. Rev. Lett. 84, 6098(2000).Google Scholar
  21. 21.
    J. Müller et al., cond-mat/0109030.Google Scholar
  22. 22.
    P. C. Canfield et al., Physics Today 51 (1040), (1998).Google Scholar
  23. 23.
    M. Nohara et al., J. Phys. Soc. Jpn. 68, 1078(1999); M. Nohara et al., Physica C 341–348, 2177(2000).Google Scholar
  24. 24.
    K. Izawa et al., Phys. Rev. Lett. 86, 1327(2001).Google Scholar
  25. 25.
    K. Maki, P. Thalmeier, and H. Won, Phys. Rev. B 65, 140502(2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Koichi Izawa
    • 1
  • Yuji Matsuda
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwa, ChibaJapan

Personalised recommendations