Abstract
Data for the apparent molar volumes of aqueous dimethylamine and dimethylammonium chloride have been determined with platinum vibrating tube densimeters at temperatures 283.15 K ≤ T ≤ 523.15 K and at different pressures. Apparent molar heat capacities were measured with a Picker flow microcalorimeter over the temperature range 283.15 K ≤T ≤ 343.15 K at 1 bar. At high temperatures and steam saturation pressures, the standard partial molar volumes \(V_2^ \circ \) of dimethylamine and dimethylammonium chloride deviate towards positive and negative discontinuities at the critical temperature and pressure, as is typical for many neutral and ionic species. The revised Helgeson-Kirkham-Flowers (HKF) model and fitting equations based on the appropriate derivatives of solvent density have been used to represent the temperature and pressure dependence of the standard partial molar properties. The standard partial molar heat capacities of dimethylamine ionization \(\Delta _{{\text{ion}}} C_{{\text{p,2}}}^ \circ \), calculated from both models, are consistent with literature data obtained by calorimetric measurements at T ≤ 398 K to within experimental error. At temperatures below 523 K, the standard partial molar volumes of dimethylamine ionization \(\Delta _{{\text{ion }}} V_2^ \circ \) agree with those of morpholine to within 12 cm3-mol-1, suggesting that the ionization of secondary amine groups in each molecule is very similar. The extrapolated value for \(\Delta _{{\text{ion }}} V_2^ \circ \) of dimethylamine above 523 K is very different from the values measured for morpholine at higher temperature. The difference is undoubtedly due to the lower critical temperature and pressure of (CH3)2NH(aq).
This is a preview of subscription content, log in to check access.
REFERENCES
- 1.
P. R. Tremaine, D. N. Shvedov, and C. Xiao, J. Phys. Chem. B. 101, 409 (1997).
- 2.
C. M. Criss and R. H. Wood, J. Chem. Thermodyn. 28, 723 (1996).
- 3.
S. D. Hamann and S. C. Lim, Aust. J. Chem. 7, 329 (1954).
- 4.
R. E. Verrall and B. E. Conway, J. Phys. Chem. 70, 3961 (1966).
- 5.
B. E. Conway and R. E. Verrall, J. Phys. Chem. 70, 3952 (1966).
- 6.
M. V. Kaulgud and K. J. Patil, J. Phys. Chem. 78, 714 (1974).
- 7.
S. Cabani, G. Conti, and L. Lepori, J. Phys. Chem. 78, 1030 (1974).
- 8.
S. Cabani, G. Conti, L. Lepori, and G. Leva, J. Phys. Chem. 76, 1343 (1972).
- 9.
V. B. Parker, Thermal Properties of Aqueous Uni-Univalent Electrolytes, (NSRDS-NBS 2, 1965).
- 10.
N. Nichols, R. Skold, C. Spink, J. Suurkuusk, and I. Wadso, J. Chem. Thermodyn. 8, 1081 (1976).
- 11.
F. M. Jones III and E. M. Arnett, Prog. Phys. Org. Chem. 11, 263 (1974).
- 12.
S. Bergstrom and G. Olofsson, J. Chem. Thermodyn. 9, 143 (1977).
- 13.
S. Cabani, A. Conti, A. Martinelli, and E. Mateoli, J. Chem. Soc. Faraday Trans. I 69, 2112 (1973).
- 14.
P. Picker, P. A. Leduc, R. R. Phillys, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).
- 15.
P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).
- 16.
D. G. Archer, J. Phys. Chem. Ref. Data 19, 371 (1990).
- 17.
J. E. Desnoyers, C. De Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).
- 18.
H. J. Albert and R. H. Wood, Rev. Sci. Instrum. 55, 589 (1984).
- 19.
H. R. Corti, P. J. Fernandez-Prini, and F. Svarc, J. Solution Chem. 19, 793 (1990).
- 20.
C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 28, 43 (1996).
- 21.
D. Ferron and I. Lambert, J. Solution Chem. 21, 919 (1992).
- 22.
P. G. Hill, J. Phys. Chem. Ref. Data 19, 1233 (1990).
- 23.
J. K. Hovey and P. R. Tremaine, Geochim. Cosmochim. Acta 50, 453 (1986).
- 24.
J. K. Hovey, L. Hepler, and P. R. Treamine, J. Phys. Chem. 92, 1323 (1988).
- 25.
P. J. Reilly and R. H. Wood, J. Phys. Chem. 73, 4292 (1969).
- 26.
T. F. Young and M. B. Smith, J. Phys. Chem. 58, 716 (1954).
- 27.
P. R. Tremaine, K. Sway, and J. A. Barbero, J. Solution Chem. 15, 1 (1986).
- 28.
E. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta 52, 2009 (1988).
- 29.
J. C. Tanger and H. C. Helgeson, Amer. J. Sci. 288, 19 (1988).
- 30.
J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, Computers and Geosciences 18, 899 (1992).
- 31.
G. J. Mains, J. W. Larson, and L. G. Hepler, J. Phys. Chem. 88, 1257 (1984).
- 32.
E. M. Woolley and L. G. Hepler, Can. J. Chem. 55, 158 (1977).
- 33.
C. A. Angell, in Water, A Comprehensive Treatise, Vol 7, F. Franks, ed., (Plenum Press, New York, 1982), Chap. 1.
- 34.
E. Shock, D. Sverjensky, and H. C. Helgeson, J. Chem. Soc. Faraday Trans. 88, 803 (1992).
- 35.
R. E. Mesmer, D. A. Palmer, and J. M. Simonson, in Activity Coefficients in Electrolyte Solutions, 2nd edn., K. S. Pitzer, ed., (CRC Press: Boca Raton, FL, 1991), Chap. 8.
- 36.
G. M. Anderson, S. Castet, J. Schott, and R. H. Mesmer, Geochim. Cosmochim. Acta 55, 1769 (1991).
- 37.
D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 21, 793 (1992).
- 38.
J. L. Biggerstaff and R. H. Wood, J. Phys. Chem. 92, 1988 (1988).
- 39.
R. J. Fernandez-Prini, H. R. Corti, and M. L. Japas, High-Temperature Aqueous Solutions: Thermodynamic Properties, (CRC Press, Boca Raton, FL, 1992).
- 40.
S. Cabani, G. Conti, and E. Matteoti, J. Solution Chem. 5, 125 (1976).
- 41.
J. P. Guthrie, Can. J. Chem. 55, 3700 (1977).
- 42.
J. M. H. Levelt Sengers, in Supercritical Fluid Technology, J. J. Bruno and J. F. Ely, eds., (CRC Press, Boca Raton, FL, 1991), Chap. 1.
- 43.
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edn., (McGraw Hill, New York, 1987).
- 44.
R. H. Wood, R. W. Carter, J. Quint, V. Majer, and P. T. Thompson J. Chem. Thermodyn. 26, 225 (1994).
- 45.
L. Haar, J. S. Ghallagher, and G. S. Kell, NBS/NRC Steam Table, (Hemisphere, Washington, D.C., 1984).
- 46.
P. R. Tremaine and S. Goldman, J. Phys. Chem. 82, 2317 (1978).
- 47.
P. Pan and P. R. Tremaine, Geochim. Cosmochim. Acta 58, 4867 (1994).
- 48.
E. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta. 54, 915 (1990).
- 49.
D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data. 11,Suppl. No. 2 (1982).
- 50.
J. M. Johnson and D. Norton, Amer. J. Sci. 291, 541 (1991).
- 51.
G. G. Lewis and E. A. M. Wetton, Base Strengths and Volatilities of Some Volatile Amines, Part 2: Experimental Results for Cyclohexylamine, Piperidine and Quinuclidine at Elevated Temperatures, Central Electricity Generating Board (CEGB), Report NWR/SSD/86/0118/R (1986).
- 52.
J. W. Cobble and P. J. Turner, Additives for pH Control in PWR Secondary Water, Electric Power Research Inst. (EPRI) Report NP-4209 (1985).
- 53.
A. J. Ellis and I. M. McFadden, Chem. Commun. 516 (1968).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Shvedov, D., Tremaine, P.R. Thermodynamic Properties of Aqueous Dimethylamine and Dimethylammonium Chloride at Temperatures from 283 K to 523 K: Apparent Molar Volumes, Heat Capacities, and Temperature Dependence of Ionization. Journal of Solution Chemistry 26, 1113–1143 (1997). https://doi.org/10.1023/A:1022977006327
Issue Date:
- Partial molar heat capacities
- partial molar volumes
- dimethylamine
- dimethylammonium chloride
- hydrothermal
- aqueous amine solutions