Thermodynamic Properties of Aqueous Dimethylamine and Dimethylammonium Chloride at Temperatures from 283 K to 523 K: Apparent Molar Volumes, Heat Capacities, and Temperature Dependence of Ionization

Abstract

Data for the apparent molar volumes of aqueous dimethylamine and dimethylammonium chloride have been determined with platinum vibrating tube densimeters at temperatures 283.15 K ≤ T ≤ 523.15 K and at different pressures. Apparent molar heat capacities were measured with a Picker flow microcalorimeter over the temperature range 283.15 K ≤T ≤ 343.15 K at 1 bar. At high temperatures and steam saturation pressures, the standard partial molar volumes \(V_2^ \circ \) of dimethylamine and dimethylammonium chloride deviate towards positive and negative discontinuities at the critical temperature and pressure, as is typical for many neutral and ionic species. The revised Helgeson-Kirkham-Flowers (HKF) model and fitting equations based on the appropriate derivatives of solvent density have been used to represent the temperature and pressure dependence of the standard partial molar properties. The standard partial molar heat capacities of dimethylamine ionization \(\Delta _{{\text{ion}}} C_{{\text{p,2}}}^ \circ \), calculated from both models, are consistent with literature data obtained by calorimetric measurements at T ≤ 398 K to within experimental error. At temperatures below 523 K, the standard partial molar volumes of dimethylamine ionization \(\Delta _{{\text{ion }}} V_2^ \circ \) agree with those of morpholine to within 12 cm3-mol-1, suggesting that the ionization of secondary amine groups in each molecule is very similar. The extrapolated value for \(\Delta _{{\text{ion }}} V_2^ \circ \) of dimethylamine above 523 K is very different from the values measured for morpholine at higher temperature. The difference is undoubtedly due to the lower critical temperature and pressure of (CH3)2NH(aq).

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    P. R. Tremaine, D. N. Shvedov, and C. Xiao, J. Phys. Chem. B. 101, 409 (1997).

    Google Scholar 

  2. 2.

    C. M. Criss and R. H. Wood, J. Chem. Thermodyn. 28, 723 (1996).

    Google Scholar 

  3. 3.

    S. D. Hamann and S. C. Lim, Aust. J. Chem. 7, 329 (1954).

    Google Scholar 

  4. 4.

    R. E. Verrall and B. E. Conway, J. Phys. Chem. 70, 3961 (1966).

    Google Scholar 

  5. 5.

    B. E. Conway and R. E. Verrall, J. Phys. Chem. 70, 3952 (1966).

    Google Scholar 

  6. 6.

    M. V. Kaulgud and K. J. Patil, J. Phys. Chem. 78, 714 (1974).

    Google Scholar 

  7. 7.

    S. Cabani, G. Conti, and L. Lepori, J. Phys. Chem. 78, 1030 (1974).

    Google Scholar 

  8. 8.

    S. Cabani, G. Conti, L. Lepori, and G. Leva, J. Phys. Chem. 76, 1343 (1972).

    Google Scholar 

  9. 9.

    V. B. Parker, Thermal Properties of Aqueous Uni-Univalent Electrolytes, (NSRDS-NBS 2, 1965).

  10. 10.

    N. Nichols, R. Skold, C. Spink, J. Suurkuusk, and I. Wadso, J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  11. 11.

    F. M. Jones III and E. M. Arnett, Prog. Phys. Org. Chem. 11, 263 (1974).

    Google Scholar 

  12. 12.

    S. Bergstrom and G. Olofsson, J. Chem. Thermodyn. 9, 143 (1977).

    Google Scholar 

  13. 13.

    S. Cabani, A. Conti, A. Martinelli, and E. Mateoli, J. Chem. Soc. Faraday Trans. I 69, 2112 (1973).

    Google Scholar 

  14. 14.

    P. Picker, P. A. Leduc, R. R. Phillys, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  15. 15.

    P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  16. 16.

    D. G. Archer, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  17. 17.

    J. E. Desnoyers, C. De Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  18. 18.

    H. J. Albert and R. H. Wood, Rev. Sci. Instrum. 55, 589 (1984).

    Google Scholar 

  19. 19.

    H. R. Corti, P. J. Fernandez-Prini, and F. Svarc, J. Solution Chem. 19, 793 (1990).

    Google Scholar 

  20. 20.

    C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 28, 43 (1996).

    Google Scholar 

  21. 21.

    D. Ferron and I. Lambert, J. Solution Chem. 21, 919 (1992).

    Google Scholar 

  22. 22.

    P. G. Hill, J. Phys. Chem. Ref. Data 19, 1233 (1990).

    Google Scholar 

  23. 23.

    J. K. Hovey and P. R. Tremaine, Geochim. Cosmochim. Acta 50, 453 (1986).

    Google Scholar 

  24. 24.

    J. K. Hovey, L. Hepler, and P. R. Treamine, J. Phys. Chem. 92, 1323 (1988).

    Google Scholar 

  25. 25.

    P. J. Reilly and R. H. Wood, J. Phys. Chem. 73, 4292 (1969).

    Google Scholar 

  26. 26.

    T. F. Young and M. B. Smith, J. Phys. Chem. 58, 716 (1954).

    Google Scholar 

  27. 27.

    P. R. Tremaine, K. Sway, and J. A. Barbero, J. Solution Chem. 15, 1 (1986).

    Google Scholar 

  28. 28.

    E. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta 52, 2009 (1988).

    Google Scholar 

  29. 29.

    J. C. Tanger and H. C. Helgeson, Amer. J. Sci. 288, 19 (1988).

    Google Scholar 

  30. 30.

    J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, Computers and Geosciences 18, 899 (1992).

    Google Scholar 

  31. 31.

    G. J. Mains, J. W. Larson, and L. G. Hepler, J. Phys. Chem. 88, 1257 (1984).

    Google Scholar 

  32. 32.

    E. M. Woolley and L. G. Hepler, Can. J. Chem. 55, 158 (1977).

    Google Scholar 

  33. 33.

    C. A. Angell, in Water, A Comprehensive Treatise, Vol 7, F. Franks, ed., (Plenum Press, New York, 1982), Chap. 1.

    Google Scholar 

  34. 34.

    E. Shock, D. Sverjensky, and H. C. Helgeson, J. Chem. Soc. Faraday Trans. 88, 803 (1992).

    Google Scholar 

  35. 35.

    R. E. Mesmer, D. A. Palmer, and J. M. Simonson, in Activity Coefficients in Electrolyte Solutions, 2nd edn., K. S. Pitzer, ed., (CRC Press: Boca Raton, FL, 1991), Chap. 8.

    Google Scholar 

  36. 36.

    G. M. Anderson, S. Castet, J. Schott, and R. H. Mesmer, Geochim. Cosmochim. Acta 55, 1769 (1991).

    Google Scholar 

  37. 37.

    D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 21, 793 (1992).

    Google Scholar 

  38. 38.

    J. L. Biggerstaff and R. H. Wood, J. Phys. Chem. 92, 1988 (1988).

    Google Scholar 

  39. 39.

    R. J. Fernandez-Prini, H. R. Corti, and M. L. Japas, High-Temperature Aqueous Solutions: Thermodynamic Properties, (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  40. 40.

    S. Cabani, G. Conti, and E. Matteoti, J. Solution Chem. 5, 125 (1976).

    Google Scholar 

  41. 41.

    J. P. Guthrie, Can. J. Chem. 55, 3700 (1977).

    Google Scholar 

  42. 42.

    J. M. H. Levelt Sengers, in Supercritical Fluid Technology, J. J. Bruno and J. F. Ely, eds., (CRC Press, Boca Raton, FL, 1991), Chap. 1.

    Google Scholar 

  43. 43.

    R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edn., (McGraw Hill, New York, 1987).

    Google Scholar 

  44. 44.

    R. H. Wood, R. W. Carter, J. Quint, V. Majer, and P. T. Thompson J. Chem. Thermodyn. 26, 225 (1994).

    Google Scholar 

  45. 45.

    L. Haar, J. S. Ghallagher, and G. S. Kell, NBS/NRC Steam Table, (Hemisphere, Washington, D.C., 1984).

    Google Scholar 

  46. 46.

    P. R. Tremaine and S. Goldman, J. Phys. Chem. 82, 2317 (1978).

    Google Scholar 

  47. 47.

    P. Pan and P. R. Tremaine, Geochim. Cosmochim. Acta 58, 4867 (1994).

    Google Scholar 

  48. 48.

    E. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta. 54, 915 (1990).

    Google Scholar 

  49. 49.

    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data. 11,Suppl. No. 2 (1982).

  50. 50.

    J. M. Johnson and D. Norton, Amer. J. Sci. 291, 541 (1991).

    Google Scholar 

  51. 51.

    G. G. Lewis and E. A. M. Wetton, Base Strengths and Volatilities of Some Volatile Amines, Part 2: Experimental Results for Cyclohexylamine, Piperidine and Quinuclidine at Elevated Temperatures, Central Electricity Generating Board (CEGB), Report NWR/SSD/86/0118/R (1986).

  52. 52.

    J. W. Cobble and P. J. Turner, Additives for pH Control in PWR Secondary Water, Electric Power Research Inst. (EPRI) Report NP-4209 (1985).

  53. 53.

    A. J. Ellis and I. M. McFadden, Chem. Commun. 516 (1968).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shvedov, D., Tremaine, P.R. Thermodynamic Properties of Aqueous Dimethylamine and Dimethylammonium Chloride at Temperatures from 283 K to 523 K: Apparent Molar Volumes, Heat Capacities, and Temperature Dependence of Ionization. Journal of Solution Chemistry 26, 1113–1143 (1997). https://doi.org/10.1023/A:1022977006327

Download citation

  • Partial molar heat capacities
  • partial molar volumes
  • dimethylamine
  • dimethylammonium chloride
  • hydrothermal
  • aqueous amine solutions