Advertisement

Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite

  • M. WeiEmail author
  • J. H. Evans
  • T. Bostrom
  • L. Grøndahl
Article

Abstract

Powders of hydroxyapatite (HA), partially fluoride-substituted hydroxyapatite (fHA), and fluorapatite (FA) were synthesized in house using optimum methods to achieve relatively pure powders. These powders were assessed by the commonly used bulk techniques of X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and FT-Raman spectroscopies, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and F-selective electrode. In addition, the current study has employed transmission electron microscopy (TEM), involving morphological observation, electron diffraction and energy-dispersive X-ray spectrometry (EDX), as an effective analytical technique to evaluate the powders at a microscopic level. The HA and fHA particles were elongated platelets about 20×60 nm in size, while FA particles were over twice this size. Calcination of the HA and fHA powders at 1000 °C for 1 h resulted in increased grain size and crystallinity. The calcined fHA material appeared to possess a crystal structure intermediate between HA and FA, as evidenced by the (3 0 0) peak shift in XRD, as well as by the position of the hydroxyl bands in the FTIR spectra. This result was consistent with electron diffraction of individual particles. Small levels of impurities in some of the powders were identified by EDX and electron diffraction, and the carbonate content was detected by FTIR. The use of TEM in conjunction with the bulk techniques has allowed a more thorough assessment of the apatites, and has enabled the constituents in these closely related apatite powders to be identified.

Keywords

Apatite Hydroxyapatite Electron Diffraction Inductively Couple Plasma Atomic Emission Spectroscopy Emission Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Legeros and J. P. Legeros, in An Introduction to Bioceramics, edited by L. L. Hench and J. Wilson (World Scientific, Singapore, 1993).Google Scholar
  2. 2.
    M. Okazaki, Y. Miake, H. Tohda, T. Yanagisawa, T. Matsumoto and J. Takahashi, Biomater. 20 (1999) 1421.Google Scholar
  3. 3.
    J. C. Elliott, in Studies in Inorganic Chemistry, Vol. 18 (Elsevier, Amsterdam, 1994).Google Scholar
  4. 4.
    G. Penel, G. Leory, C. Rey, B. Sombret, J. P. Huvenne and E. Bres, J. Mater. Sci. Mater. Med. 8 (1997) 271.Google Scholar
  5. 5.
    C. B. Baddiel and E. E. Berry, Spectrochemica Acta 22 (1966) 1407.Google Scholar
  6. 6.
    Y. Liu, P. Comodi and P. Sassi, N. Jb. Miner. Abh. 174 (1998) 211.Google Scholar
  7. 7.
    F. Freund and R. M. Knobel, J. Chem. Soc., Dalton Trans. (1977) 1136.Google Scholar
  8. 8.
    A. Baumer, M. Ganteaume and W. E. Klee, Bull. Mineral. 108 (1985) 145.Google Scholar
  9. 9.
    M. Braun, P. Hartmann and C. Jana, J. Mater. Sci. Mater. Med. 6 (1995) 150.Google Scholar
  10. 10.
    L. J. Jha, S. M. Best, J. C. Knowles, I. Rehman, J. D. Santos and W. Bonfield, ibid. 8 (1997) 185.Google Scholar
  11. 11.
    M. Wei, A. J. Ruys, B. K. Milthorpe and C. C. Sorrell, J. Biomed. Mater. Res. 45 (1999) 11.Google Scholar
  12. 12.
    H.-J. Kleebe, E. F. Bres, D. Bernache-Assolant and G. Ziegler, J. Am. Ceram. Soc. 80 (1997) 37.Google Scholar
  13. 13.
    H. Ji and P. M. Marquis, J. Mater. Sci. Letters 10 (1991) 132.Google Scholar
  14. 14.
    E. I. Suvorova, F. Christensson, H. E. Lundager Madsen and A. A. Chernov, J. Cryst. Growth 186 (1998) 262.Google Scholar
  15. 15.
    E. I. Suvorova and P. A. Buffat, J. Microsc. 196 (1999) 46.Google Scholar
  16. 16.
    M. Jarcho, C. H. Bolen, M. B. Thomas, J. Boick, J. F. Kay and R. H. Doremus, J. Mater. Sci. 11 (1976) 2027.Google Scholar
  17. 17.
    M. Hirano, H. Takeuchi and M. Ono, in Sintering'87 Volume 2, Proc. of the International Institute for the Science of Sintering Symposium, edited by S. Somiya, M. Shimada, M. Yoshimura and R. Watanabe (Elsevier, Amsterdam, Holland, 1987).Google Scholar
  18. 18.
    T. Futagami and T. Okamoto, J. Ceram. Soc. Jap. 95 (1987) 775.Google Scholar
  19. 19.
    E. D. Eanes and A. W. Hailer, Calcif. Tissue Int. 63 (1998) 250.Google Scholar
  20. 20.
    M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira and J. Takahashi, Biomater. 19 (1998) 919.Google Scholar
  21. 21.
    A. Traveria-Cros, M. Cuevas-Diarte, F. Plana-Lievat and M. Font-Altaba, Acta Geol. Hisp. 15 (1980) 15.Google Scholar
  22. 22.
    R. Fabian, I. Kotsis, P. Zimany and P. Halmos, Talanta 46 (1998) 1273.Google Scholar
  23. 23.
    E. J. Duff and J. L. Stuart, Anal. Chem. Acta. 52 (1970) 155.Google Scholar
  24. 24.
    J. L. Labar, in Proc. of EUREM 12, Volume III, edited by L. Frank and F. Ciampor (Brno, Hungary, 2000).Google Scholar
  25. 25.
    J. D. B. Featherstone, S. Pearson and R. Z. Legeros, Caries Res. 18 (1984) 63.Google Scholar
  26. 26.
    L. Grondahl, L. Rintoul, M. Wei, E. Wentrup-Byrne and J. H. Evans. Work in progress.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Wei
    • 1
    Email author
  • J. H. Evans
    • 1
  • T. Bostrom
    • 2
  • L. Grøndahl
    • 3
  1. 1.Centre for Rehabilitation Science and EngineeringQueensland University of Technology, Gardens Point CampusBrisbaneAustralia
  2. 2.Analytical Electron Microscopy FacilityQueensland University of TechnologyBrisbane, QLDAustralia
  3. 3.School of Physical and Chemical SciencesQueensland University of TechnologyBrisbane, QLDAustralia

Personalised recommendations