Journal of Applied Phycology

, Volume 15, Issue 1, pp 61–66 | Cite as

Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases

  • Toshiyuki Shibata
  • Kohki Nagayama
  • Ryusuke Tanaka
  • Kuniko Yamaguchi
  • Takashi Nakamura


The inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s (sPLA2s), lipoxygenases (LOXs) and cyclooxygenases (COXs) were determined with an in vitro assay. Oligomers of phloroglucinol; eckol (a trimer), phlorofucofuroeckol A (a pentamer), dieckol (a hexamer) and 8,8′-bieckol (a hexamer) isolated from the brown alga Eisenia bicyclis had pronounced inhibitory effects on sPLA2 from porcine pancreas and bee venom (IC50 100–200 μM). The phlorotannins inhibited LOX activity more effectively than the well-known LOX inhibitors; resveratrol and epigallocatechin gallate. 8,8′-Bieckol, the strongest LOX inhibitor in this study, inhibited soybean LOX and 5-LOX with IC50 values of 38 and 24 μM, respectively. Negligible or very weak effects of the phlorotannins on COX-1 and COX-2 were found, except for an inhibitory effect of dieckol on COX-1 (74.7%) and of eckol on COX-2 (43.2%) at 100 μM.

Brown alga Cyclooxygenase Eisenia bicyclis Enzyme inhibition HPLC Lipoxygenase Phlorotannin Polyphenol Secretory phospholipase A2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bomalaski J.S. and Clark M.A. 1993. Phospholipase A2 and arthitis. Arthritis Rheum. 36: 190–198.Google Scholar
  2. Dennis E.A. 1994. Diversity of group types, regulation, and function of phospholipase A2. J. biol. Chem. 269: 13057–13060.Google Scholar
  3. Dennis E.A. 1997. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends. Biochem. Sci. 22: 1–2.Google Scholar
  4. Fan X. and Matthesis J.P. 2001. Inhibition of oxidative and antioxidative enzymes by trans-resveratrol. J. Food. Sci. 66: 200–203.Google Scholar
  5. Funk C.D., Hoshiko S., Matsumoto T., Radmark O. and Samuelsson B. 1989. Characterization of the human 5-lipoxygenase gene. Proc. natl Sci. USA 86: 2587–2591.Google Scholar
  6. Hendrickson H.S., Kendrickson E.K. and Dybvig R.H. 1983. Chiral synthesis of a dithiolester analog of phosphatidylcholine as a substrate for the assay of phospholipase A2. J. Lipid. Res. 24: 1532–1537.Google Scholar
  7. Hollman P.C.H. and Katan M.B. 1999. Dietary flavonoids: intake, health effects and bioavailability. Food Chem. Toxicol. 37: 937–942.Google Scholar
  8. Hong J., Smith T.J., Ho C.-T., August D.A. and Yang C.S. 2001. Effects of purified green and black tea polyphenols on cyclooxygenase and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol. 62: 1175–1183.Google Scholar
  9. Jang M., Cai L., Udeani G.O., Slowing K.V., Thomas C.F., Beecher C.W.W. et al. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220.Google Scholar
  10. Kohyama N., Nagata T., Fujimoto S. and Sekiya K. 1997. Inhibition of arachidonate lipoxygenase activities by 2-(3,4-dihidroxyphenyl) ethanol, a phenolic compounds from olives. Biosci. Biotechnol. Biochem. 61: 347–350.Google Scholar
  11. Komoda T., Morimitsu Y., Hirota H. and Hirota A. 1995. USF-19A, a new lipoxygenase inhibitor from Streptomyces sp. Biosci. Biotechnol. Biochem. 59: 924–926.Google Scholar
  12. Koshihara Y., Neichi T., Murota S., Lao A., Fujimoto Y. and Tatsuno T. 1984. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim. biophys. Acta 792: 92–97.Google Scholar
  13. Maccarrone M., Lorenzon T., Guerrieri P. and Agro A.F. 1999. Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur. J. Biochem. 265: 27–34.Google Scholar
  14. Nakamura T., Mukaiyama T. and Nagayama K. 1991. A rapid and simple method to detect antioxidative substances on a thinlayer chromatography plate. J. Fac. Agric. Kyushu Univ. 36: 93–98.Google Scholar
  15. Nakamura T., Nagayama K., Uchida K. and Tanaka R. 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci. 62: 923–926.Google Scholar
  16. Ragan M.A. and Glombitza K.-W. 1986. Phlorotannins, brown algal polyphenols. Progr. Phycol. Res. 4: 129–241.Google Scholar
  17. Reynolds L.J., Hughes L.L. and Dennis E.A. 1992. Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micells: Development of a spectrometric assay suitable for microtiterplate reader. Anal. Biochem. 204: 190–197.Google Scholar
  18. Shibata D., Steczko J., Dixon J.E., Hermodson M. and Yazdanparast R. 1987. Primary structure of soybean lipoxygenase-1. J. biol. Chem. 262: 10080–10085.Google Scholar
  19. Shibata T., Yamaguchi K., Nagayama K., Kawaguchi S. and Nakamura T. 2002a. Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur. J. Phycol. 37: 493–500.Google Scholar
  20. Shibata T., Fujimoto K., Nagayama K., Yamaguchi K. and Nakamura T. 2002b. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food. Sci. Tech. 37: 703–709.Google Scholar
  21. Spector A.A., Gordon J.A. and Moore S.A. 1988. Hydroxyeicosatetraenoic acids (HETEs). Progr. Lipid. Res. 27: 271–323.Google Scholar
  22. Tamagawa K., Iizuka S., Ikeda A., Koike H., Naganuma K. and Komiyama Y. 1999. Inhibitory effects of proanthocyanidins isolated from barley bran on hyaluronidase activity, soybean lipoxygenase activity and complementary activity. Nippon Shokuhin Kagaku Kogaku Kaishi 46: 521–527.Google Scholar
  23. Tappel A.L., Lundberg W.O. and Boyer P.D. 1952. Effect of temperature and antioxidants upon the lipoxidase-catalyzed oxidation of sodium linoleate. Arch. Biochem. Biophys. 42: 293–304.Google Scholar
  24. William L., Smith R., Michael G. and David L.D. 1996. Prostaglandin endoperoxidate H synthases (cyclooxygenase)-1 and-2. J. biol. Chem. 271: 33157–33160.Google Scholar
  25. Yamamoto S. 1992. Mammalian lipoxygenases: molecular structures and function. Biochim. biophys. Acta 1128: 117–131.Google Scholar
  26. Yang J.-A., Choi J.-H. and Rhee S.-J. 1999. Effects of green tea catechin phospholipase A2 activity and antithrombus in streptozotocin diabetic rats. J. Nutr. Sci. Vitaminol. 45: 337–346.Google Scholar
  27. Yasumoto K., Yamamoto A. and Mitsuda H. 1970. Effect of phenolic antioxidants on lipoxygenase reaction. Agr. biol. Chem. 34: 1162–1168.Google Scholar
  28. Zhang Y.-Y., Lind B., Radmark O. and Samuelsson B. 1993. Iron content of human 5-lipoxygenase, effects of mutations regarding conserved hisitidine residues. J. biol. Chem. 268: 2535–2541.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Toshiyuki Shibata
    • 1
  • Kohki Nagayama
    • 1
  • Ryusuke Tanaka
    • 2
  • Kuniko Yamaguchi
    • 1
  • Takashi Nakamura
    • 1
  1. 1.Laboratory of Marine Resource Chemistry, Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityHigashi-ku, FukuokaJapan
  2. 2.Department of Food ScienceNational University of FisheriesYoshimi, ShimonosekiJapan

Personalised recommendations