Journal of Applied Phycology

, Volume 15, Issue 1, pp 67–74 | Cite as

Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia

  • M.L. Piriz
  • M.C. Eyras
  • C.M. Rostagno


Trends in wrack composition and biomass, and its relationship with the anthropogenic impact were studied along a coastal area in Nuevo Gulf (south Patagonia) in front of Puerto Madryn city. Beach-cast macroalgae composition was sampled from 1992 to 1999 in the Puerto Madryn beaches and in several other nearby beaches in 1993, 1996 and 1998. Historical information was based on local knowledge and observations reported by marine biologists who worked in the area. The botanical composition of the beach-cast macroalgae in Puerto Madryn indicates a succession in the dominance from Codium spp. to Ulva spp. during the 1990s and from Ulva to Undaria pinnatifida since 1998, accompanied by a significant decrease in biomass of Gracilaria gracilis and Macrocystis pyrifera. The increase of the opportunist species such as Ulva may be supported by the continuous delivery of waste waters into the Nuevo Gulf while the dominance of U. pinnatifida may be associated with port activities. During the sampling period the highest wrack biomass values were recorded in spring and summer. The beach-cast seaweed biomass harvested by the municipality of Puerto Madryn during beach cleaning operation, ranged between 2500 and 12000 t year−1 ( 200 and 960 t dry weight). Wrack harvesting produces an environmental impact by removing sand from the beach and affecting coastal communities. Composting of wrack is proposed as one of the environmental alternatives to land disposal.

Argentine Patagonia Beach-cast seaweeds Bioinvaders Eutrophication Seaweed wracks Ulva Undaria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrales H.L. and Lobban C.S. 1975. The comparative Ecology of Macrocystis pyrifera with emphasis on the forest of Chubut, Argentina. J. Ecol. 63: 657–677.Google Scholar
  2. Briand X. 1991. Seaweed harvesting in Europe. In: Guiry M.D. and Blunden G. (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley and Sons Ltd., Chichester, pp. 259–308.Google Scholar
  3. Câmara Neto C., De AraÚjo R.A., De Melo Filho N.R., Soares M.L. and Costa P.N. 1981. Composiçâo e estimativa da biomassa das algas arribadas em praias do Rio Grande do Norte. Serie: Brasil SUDENE, Estudos de Pesca 9, Projeto Algas Estado do Rio Grande do Norte: 84–96., Recife, Brasil.Google Scholar
  4. Campbell S.J. 1999. Uptake of ammonium by four species of macroalgae in Port Phillip Bay, Victoria, Australia. Mar. Freshwat. Res. 50: 515–522.Google Scholar
  5. Casas G.N. and Piriz M.L. 1996. Surveys of Undaria pinnatifida (Laminariales, Phaeophyta) in Golfo Nuevo, Argentina. Hydrobiologia 326/327: 213–215.Google Scholar
  6. Cuomo V., Perretti A., Palomba I., Verde A. and Cuomo A. 1995. Utilization of Ulva rigida biomass in the Venice Lagoon (Italy): Biotransformation in compost. J. appl. Phycol. 7: 479–485.Google Scholar
  7. Diaz P., López Gappa J.J. and Piriz M.L. 2002. Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot. mar. 45: 267–273.Google Scholar
  8. Escofet A. and Burgueño J.C. 1993. Natural cleaning proficiency as a coastal macrodescriptor. In: 8th Symposium on Coastal and Ocean Management, Coastal Management in Mexico the Baja California experience., New Orleans, Louisiana, USA.Google Scholar
  9. Estéves J.L., Solís M., Gil M., Santinelli N., Sastre V., González Raies C. et al. 1997. Evaluación de la contaminación urbana de la Bahía Nueva (Provincia del Chubut). Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica, Fundación Patagonia Natural (Puerto Madryn, Argentina) 31: 1–32.Google Scholar
  10. Eyras M.C. and Rostagno C.M. 1996. Bioconversión de Algas Marinas de Arribazón: Experiencias en Puerto Madryn, Chubut (Argentina). Naturalia Patagónica, Ciencias Biológicas (Chubut, Argentina) 3: 25–39.Google Scholar
  11. Eyras M.C., Rostagno C.M. and Defossé G.E. 1998. Biological evaluation of seaweed composting. Compost Sci. Util. 6: 74–81.Google Scholar
  12. Halperin, Asensi A. and Boraso A. 1973. Informe preliminar sobre la distribución de algunas algas de interés industrial en la Costa Patagónica (Argentina). CIBIMA. Cont. Técnica 13, 33 pp.Google Scholar
  13. Huvé H., Kiener A. and Riouall R. 1973. Modifications de la flore et des populations ichtyologiques des Etangs de Berre et de Vaine (Bouches-du-Rh*ne) en fonction des conditions hydrologiques crées par le déversement de la durance. Bull. Mus. Hist. nat. Marseilles 33: 123–134, Tab. I-IV.Google Scholar
  14. Kirkman H. and Kendrick G.A. 1997. Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J. appl. Phycol. 9: 311–326.Google Scholar
  15. Lobban C.S., Harrison P.J. and Duncan M.J. 1985. The Physiological Ecology of Seaweeds. Cambridge University Press, Cambridge, 237 pp.Google Scholar
  16. Mazé J., Morand P. and Potoky P. 1993. Stabilisation of ‘Green tides’ Ulva by a method of composting with a view to pollution limitation. J. appl. Phycol. 5: 183–190.Google Scholar
  17. Morand P. and Briand X. 1996. Excessive growth of macroalgae: A symptom of environmental disturbance. Bot. mar. 39: 491–516.Google Scholar
  18. Morand P., Carpentier B., Charlier R.H., Mazé J., Orlandini M., Plunkett B.A. et al. 1991. Bioconversion of Seaweeds. In: Guiry M.D. and Blunden G. (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley and Sons Ltd., Chichester, pp. 95–148.Google Scholar
  19. Morand P., Charlier R.H. and Mazé J. 1990. European bioconversion projects and realizations for macroalgal biomass: Saint-Cast-Le-Guildo (France) experiment. Hydrobiologia 204/205: 301–308.Google Scholar
  20. Olivier S.R., Kreibohm de Paternoster I. and Bastida R. 1966. Estudios biocenóticos en las Costas de Chubut (Argentina) I. Zonación biocenológica de Puerto Pardelas (Golfo Nuevo). Boletín del Instituto de Biología Marina (Mar del Plata, Argentina) 10: 1–74.Google Scholar
  21. Orensanz J.M. 1986. Size, environment and density: The regulation of Scallop stock and its management implications. In: Jamieson G.S. and Bourne N. (eds), North Pacific Workshop on Stock Assessment and Management of Invertebrates. Can. J. Fisheries aquatic Sci. Vol. 92., pp. 195–227.Google Scholar
  22. Piriz M.L. and Casas G.N. 1994. Occurrence of Undaria pinnati-fida in Golfo Nuevo, Argentina. Appl. Phycol. Forum. 10: 4.Google Scholar
  23. Schramm W. 1991. Seaweeds for waste water treatment and recycling of nutrients. In: Guiry M.D. and Blunden G. (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley and Sons Ltd, Chichester, pp. 149–168.Google Scholar
  24. Waite T. and Mitchell R. 1972. The effect of nutrient fertilization on the benthic alga Ulva lactuca. Bot. mar. 15: 151–156.Google Scholar
  25. Walker D.I. and Kendrick G.A. 1998. Threats to macroalgal diversity: Marine habitat destruction and fragmentation, pollution and introduced dpecies. Bot. mar. 41: 105–112.Google Scholar
  26. ZoBell C.E. 1959. Factors affecting drift seaweeds on some San Diego beaches. University of California, Institute of Marine Resources, IMR, 59-3; 122 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.L. Piriz
    • 1
  • M.C. Eyras
    • 2
  • C.M. Rostagno
    • 2
  1. 1.Centro Nacional Patagónico (CONICET), Boul. Brown s/nºPuerto MadrynArgentina
  2. 2.Universidad Nacional de la Patagonia San Juan BoscoPuerto MadrynArgentina

Personalised recommendations