Landscape Ecology

, Volume 18, Issue 1, pp 83–92 | Cite as

Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation

  • F. Jordán
  • A. Báldi
  • K.-M. Orci
  • I. Rácz
  • Z. Varga


Since the fragmentation of natural habitats is one of the most serious problems for many endangered species, it is highly interesting to study the properties of fragmented landscapes. As a basic property, landscape connectivity and its effects on various ecological processes are frequently in focus. First, we discuss the relevance of some graph properties in quantifying connectivity. Then, we propose a method how to quantify the relative importance of habitat patches and corridors in maintaining landscape connectivity. Our combined index explicitly considers pure topological properties and topographical measures, like the quality of both patches (local population size) and corridors (permeability). Finally, for illustration, we analyze the landscape graph of the endangered, brachypterous bush-cricket Pholidoptera transsylvanica. The landscape contains 11 patches and 13 corridors and is situated on the Aggtelek Karst, NE-Hungary. We characterize the importance of each node and link of the graph by local and global network indices. We show how different measures of connectivity may suggest different conservation preferences. We conclude, accordingly to our present index, by identifying one specific habitat patch and one specific corridor being in the most critical positions in maintaining connectivity.

Connectivity Ecological corridor Hungary Landscape graph Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert R., Jeong H. and Barabási A.-L. 2000. Error and attack tolerance of complex networks. Nature 406: 378–381.CrossRefPubMedGoogle Scholar
  2. van Apeldoorn R.C., Oostenbrink W.T., van Winden A. and van der Zee F.F. 1992. Effects of habitat fragmentation on the bank vole, Clethrionomys glareolus, in an agricultural landscape. Oikos 65: 265–274.Google Scholar
  3. Báldi A. and Kisbenedek T. 1999. Orthopterans in small steppe patches: an investigation for the best-fit model of the species-area curve and evidences for their non-random distribution in the patches. Acta Oecologica 20: 125–132.Google Scholar
  4. Beier P. and Noss R.F. 1998. Do habitat corridors provide connectivity? Conservation Biology 12: 1241–1252.CrossRefGoogle Scholar
  5. Burkey T.V. 1989. Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments. Oikos 55: 75–81.Google Scholar
  6. Burkey T.V. 1999. Extinction in fragmented habitats predicted from stochastic birth-death processes with density dependence. Journal of Theoretical Biology 199: 395–406.PubMedGoogle Scholar
  7. Cabeza M. and Moilanen A. 2001. Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution 16: 242–248.PubMedGoogle Scholar
  8. Cantwell M.D. and Forman T.T. 1993. Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecology 8: 239–255.Google Scholar
  9. Carlson A. and Edenhamn P. 2000. Extinction dynamics and the regional persistence of a tree frog metapopulation. Proceedings of the Royal Society of London, series B 267: 1311–1313.Google Scholar
  10. Crooks K.R. and Soulé M.E. 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400: 563–566.Google Scholar
  11. Dias P.C. 1996. Sources and sinks in population biology. Trends in Ecology and Evolution 11: 326–330.Google Scholar
  12. Dunning J.B., Danielson B.J. and Pulliam H.R. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.Google Scholar
  13. Fahrig L. and Merriam G. 1985. Habitat patch connectivity and population survival. Ecology 66: 1762–1768.Google Scholar
  14. Gilbert F., Gonzalez A. and Evans-Freke I. 1998. Corridors maintain species richness in the fragmented landscapes of a micro-ecosystem. Proceedings of the Royal Society of London, series B 265: 577–582.Google Scholar
  15. Hanski I. 1998. Metapopulation dynamics. Nature 396: 41–49.CrossRefGoogle Scholar
  16. Hanski I. 1999. Habitat connectivity, habitat continuity, and meta-populations in dynamic landscapes. Oikos 87: 209–219.Google Scholar
  17. Harary F. 1969. Graph Theory. Addison Wesley, Cambridge, Massachusetts, USA.Google Scholar
  18. Higashi M. and Burns T.P. (eds) 1991. Theoretical Studies on Ecosystems - the Network Perspective. Cambridge University Press, Cambridge, UK.Google Scholar
  19. Ivanciuc O., Balaban T.-S. and Balaban A.T. 1993. Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices. Journal of Mathematical Chemistry 12: 309–318.MathSciNetGoogle Scholar
  20. Johnson M.P. 2000. Temporally explicit habitat ecology and the coexistence of species. Proceedings of the Royal Society of London, series B 267: 1967–1972.Google Scholar
  21. Jordán F. 2000. A reliability-theory approach to corridor design. Ecological Modelling 128: 211–220.Google Scholar
  22. Jordán F. 2001. Adding function to structure - comments on Palmarola landscape connectivity. Community Ecology, 2: 133–135.Google Scholar
  23. Keitt T.H., Urban D.L. and Milne B.T. 1997. Detecting critical scales in fragmented landscapes. Conservation Ecology [online] 1:(1):4, URL: Scholar
  24. Keymer J.E., Marquet P.A., Velasco-Hernández J.X. and Levin S.A. 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. The American Naturalist 156: 478–494.Google Scholar
  25. Kruess A. and Tscharntke T. 1994. Habitat fragmentation, species loss, and biological control. Science 264: 1581–1584.Google Scholar
  26. Lande R. 1988. Genetics and demography in biological conservation. Science 241: 1455–1460.PubMedGoogle Scholar
  27. Meglécz E., Pecsenye K., Varga Z. and Solignac M. 1998. Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Linnaeus, 1758) (Lepidoptera) populations. Hereditas 128: 95–103.Google Scholar
  28. Metzger J.P. and Décamps H. 1997. The structural connectivity threshold: an hypothesis in conservation biology at the landscape scale. Acta Oecologica 18: 1–12.Google Scholar
  29. Nagy B., Rácz I. and Varga Z. 1999. The orthopteroid insect fauna of the Aggtelek karst region (NE Hungary) referring to zoogeography and nature conservation. In: Mahunka S. (ed.), The fauna of the Aggtelek National Park. Akadémiai Kiadó, Budapest, Hungary, pp. 83–102.Google Scholar
  30. O’Neill R.V., Krummel J.R., Gardner R.H., Sugihara G., Jackson B., DeAngelis D.L. et al. 1988. Indices of landscape pattern. Landscape Ecology 1: 153–162.CrossRefGoogle Scholar
  31. Orci K.M. 1997. A comparative study on grasshopper (Orthoptera) communities in the Aggtelek Biosphere Reserve. In: Tóth E. and Horváth R. (eds), Research in Aggtelek National Park and Biosphere Reserve. ANP directorate, Aggtelek, Hungary, pp. 109–116.Google Scholar
  32. Pickett S.T.A. and Cadenasso M.L. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269: 331–334.Google Scholar
  33. Pimm S.L. 1991. The Balance of Nature? University of Chicago Press, Chicago, Illinois, USA.Google Scholar
  34. Plavsic D., Nikolic S., Trinajstic N. and Mihalic Z. 1993. On the Harary index for the characterization of chemical graphs. Journal of Mathematical Chemistry 12: 235–250.Google Scholar
  35. Pulliam H.R. 1988. Sources, sinks, and population regulation. The American Naturalist 132: 652–661.Google Scholar
  36. Rácz I., Varga Z., Mezô H. and Parragh D. 1997. Studies on the Orthoptera fauna of the Aggtelek Karst. In: Tóth E. and Horváth R. (eds), Research in Aggtelek National Park and Biosphere Reserve. ANP directorate, Aggtelek, Hungary, pp. 99–108.Google Scholar
  37. Ricotta C., Stanisci A., Avena G.C. and Blasi C. 2000. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecology 1: 89–94.Google Scholar
  38. Saccheri I., Kuussaari M., Kankare M., Vikman P., Fortelius W. and Hanski I. 1998. Inbreeding and extinction in a butterfly meta-population. Nature 392: 491–494.Google Scholar
  39. Schumaker N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology 77: 1210–1225.Google Scholar
  40. Spiller D.A. and Schoener T.W. 1998. Lizards reduce spider species richness by excluding rare species. Ecology 79: 503–516.Google Scholar
  41. Shaffer M.L. 1981. Minimum population sizes for species conservation. BioScience 31: 131–134.Google Scholar
  42. Sugihara G. 1984. Graph theory, homology and food webs. Proceedings of Symposia in Applied Mathematics 30: 83–101.Google Scholar
  43. Taylor P.D., Fahrig L., Henein K. and Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.Google Scholar
  44. Thomas C.D. 2000. Dispersal and extinction in fragmented landscapes. Proceedings of the Royal Society of London, series B 139: 139–145.Google Scholar
  45. Tiebout H.M. III and Anderson R.A. 1997. A comparison of corridors and intrinsic connectivity to promote dispersal in transient successional landscapes. Conservation Biology 11: 620–627.CrossRefGoogle Scholar
  46. Tilman D., May R.M., Lehman C.L. and Nowak M.A. 1994. Habitat destruction and the extinction debt. Nature 371: 65–66.CrossRefGoogle Scholar
  47. Tischendorf L. and Fahrig L. 2000a. On the usage and measurement of landscape connectivity. Oikos 90: 7–19.CrossRefGoogle Scholar
  48. Tischendorf L. and Fahrig L. 2000b. How should we measure landscape connectivity? Landscape Ecology 15: 633–641.CrossRefGoogle Scholar
  49. Turner M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Reviews of Ecology and Systematics 20: 171–197.Google Scholar
  50. Turner M.G., Gardner R.H., Dale V.H. and O’Neill R.V. 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.Google Scholar
  51. Urban D. and Keitt T. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82: 1205–1218.Google Scholar
  52. Varga Z. 1997. Biogeographical outline of the invertebrate fauna of the Aggtelek Karst and surrounding areas. In: Tóth E. and Horváth R. (eds), In Research in Aggtelek National Park and Biospherre Reserve. ANP Directorate, Aggtelek, Hungary, pp. 87–94.Google Scholar
  53. Varga Z.V., Sipos J., Orci K.M. and Rácz I. 2000. Semi-arid grasslands on the Aggtelek Karst: phytocoenological relationships, Orthopteranand Lepidopteran communities. In: Virágh K. and Kun A. (eds), Vegetation and Dynamism. MTA ÖBKI, Vácrátót, Hungary, pp. 195–238, (in Hungarian).Google Scholar
  54. Varga-Sipos J. and Varga Z. 1997. Phytocenology of semi-dry grasslands in the Aggtelek Karst area (N Hungary). In: Tóth E. and Horváth R. (eds), In Research in Aggtelek National Park and Biosphere Reserve. ANP Directorate, Aggtelek, Hungary, pp. 59–78.Google Scholar
  55. Wiens J.A., Stenseth N.C., Van Horne B. and Anker Ims R. 1993. Ecological mechanisms and landscape ecology. Oikos 66: 369–380.Google Scholar
  56. Zabel J. and Tscharntke T. 1998. Does fragmentation of Urtica habitats affects phytophagous and predatory insects differentially? Oecologia 116: 419–425.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • F. Jordán
    • 1
    • 2
  • A. Báldi
    • 3
  • K.-M. Orci
    • 3
  • I. Rácz
    • 4
  • Z. Varga
    • 2
    • 4
  1. 1.Department of GeneticsEötvös UniversityBudapestHungary
  2. 2.Collegium BudapestInstitute for Advanced StudyBudapestHungary
  3. 3.Animal Ecology Research Group of the Hungarian Academy of SciencesHungarian Natural History MuseumBudapestHungary
  4. 4.Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations