General Relativity and Gravitation

, Volume 35, Issue 4, pp 579–594 | Cite as

Quantum Thermal Effect of Nonstationary Kerr-Newman Black Hole

  • Xuejun Yang
  • Han He
  • Zheng Zhao
Article

Abstract

The Hawking radiation and the entropy of non-stationary Kerr-Newman black hole whose metric changes slowly are calculated via the method of Damour etc. and the thin film brick-wall model. First, we obtain the Hawking radiation temperature and the thermal spectrum formula. Second, we get the entropy density at every point of the horizon surface as well as the total entropy of the black hole, which is just the Bekenstein-Hawking entropy and relies on the notion of the local equilibrium crucially that can be met if the evaporation and the accretion of the black hole is negligible. The results show that the temperature of the event horizon depends on the time and the angle, and the entropy of the non-stationary black hole is also proportional to the horizon area with appropriate cutoff relationship as in the case of stationary black holes.

Black hole Hawking radiation entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hawking, S. W. (1974). Nature, (London), 248, 30Google Scholar
  2. [2]
    Hawking, S. W. (1975). Commun. Math. Phys. 43, 199.Google Scholar
  3. [3]
    Bekenstein, J. D. (1973). Phys. Rev. D 7, 2333Google Scholar
  4. [4]
    Bekenstein, J. D. (1974). Phys. Rev. D 9, 3292.Google Scholar
  5. [5]
    York, J. W. (1983). Phys. Rev. D 28, 2929.Google Scholar
  6. [6]
    Frolov, V., and Novikov, I. (1993). Phys. Rev. D 48, 4545.Google Scholar
  7. [7]
    Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K. (1998). Phys. Rev. Lett. 80, 904.Google Scholar
  8. [8]
    Strominger, A., and Vafa, C. (1996). Phys. Lett. B 379, 99.Google Scholar
  9. [9]
    Maldacena, J. M., and Strominger, A. (1996). Phys. Rev. Lett., 77, 428Google Scholar
  10. [10]
    Horowitz, G. T., Lowe, D. A., Maldacena, J. M. (1996). Phys. Rev. Lett. 77, 430.Google Scholar
  11. [11]
    Tae Kim, Won, J. Oh, John, and Park, Young-Jai. (2001). Phys. Lett. B 512, 131.Google Scholar
  12. [12]
    't. Hooft, G. (1985). Nucl. Phys. B 256, 727.Google Scholar
  13. [13]
    Xiang, Li, and Zhao Zheng (2000). Phys. Rev. D 62, 104001.Google Scholar
  14. [14]
    Liu Wenbiao, and Zhao Zheng (2001). Chin. Phys. Lett. 18, 345.Google Scholar
  15. [15]
    Gao Changjun, and Shen Yougen (2001). Chin. Phys. Lett. 18, 1167.Google Scholar
  16. [16]
    Birrell, N. D., and Davies, P. C. W. (1982). Quantum Field in Curved Space. Cambridge: Cambridge University Press.Google Scholar
  17. [17]
    Jing Jiliang (1988). Int. J. Theor. Phys. 37, 1441.Google Scholar
  18. [18]
    Damour, T., and Ruffini, R. (1976). Phys. Rev. D 14, 332.Google Scholar
  19. [19]
    Sannan, S. (1988). Gen. Rel. Grav. 20, 239.Google Scholar
  20. [20]
    Zhao Zheng, Luo Zhiqiang, and Dai Xianxin (1994). IL Nuovo Cimento 109B, 483.Google Scholar
  21. [21]
    Zhao Zheng, and Dai Xianxin (1991). Chin. Phys. Lett. 8, 548.Google Scholar
  22. [22]
    Zhao Zheng, Zhang Jianhua, and Zhu Jianyang (1995). Inter. J. Theor. Phys. 34, 2039.Google Scholar
  23. [23]
    Sun Mingchao, Zhao Ren, and Zhao Zheng (1995). IL Nuovo Cimento 110B, 829.Google Scholar
  24. [24]
    He Han, Zhao Zheng, and Zhang Lihua (2002). Inter. J. Theor. Phys. 41, 1801.Google Scholar
  25. [25]
    Jing Jiliang and Wang Yongjiu (1996). Inter. Theor. Phys. 35, 1481.Google Scholar
  26. [26]
    Li Zhongheng, and Zhao Zheng (1997). Acta Physica Sinica 46, 1273.Google Scholar
  27. [27]
    Min-Ho, Lee, and Won T Kim, (1996). Phys. Rev. D 54, 3904.Google Scholar
  28. [28]
    Susskind, L., and Uglum, J. (1994). Phys. Rev. D 50, 2700.Google Scholar
  29. [29]
    Demer, J. G., Lafrance, R., and Myers, R. (1995). Phys. Rev. D 52, 2245.Google Scholar
  30. [30]
    Romeo, A. (1996). Class. Quantum Grav. 13, 2797.Google Scholar
  31. [31]
    Garattini, R. (2001). Class. Quantum Grav. 18, 571.Google Scholar
  32. [32]
    Ho, J., Kim, W. T., Park, Y.-J., Shin, H. (1997). Class. Quantum Grav. 14, 2617.Google Scholar
  33. [33]
    Zhao Zheng, Zhang Jianhua and Zhu Jianyang (1995). Inter. J. Theor. Phys. 34, 2039.Google Scholar
  34. [34]
    Kreuzer, H. J. (1981). Nonequilibrium Thermodynamics and its Statistical Foundations. Oxford: Clarendon Press.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Xuejun Yang
    • 1
  • Han He
  • Zheng Zhao
  1. 1.Dept of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations