Journal of Mathematical Chemistry

, Volume 32, Issue 4, pp 323–338 | Cite as

An Eigenfunction Expansion for the Schrödinger Equation with Arbitrary Non-Central Potentials

  • H. Taşeli
  • İnci M. Erhan
  • Ö. Uğur


An eigenfunction expansion for the Schrödinger equation for a particle moving in an arbitrary non-central potential in the cylindrical polar coordinates is introduced, which reduces the partial differential equation to a system of coupled differential equations in the radial variable r. It is proved that such an orthogonal expansion of the wavefunction into the complete set of Chebyshev polynomials is uniformly convergent on any domain of (r,θ). As a benchmark application, the bound states calculations of the quartic oscillator show that both analytical and numerical implementations of the present method are quite satisfactory.

two-dimensional Schrödinger equation eigenfunction expansion eigenvalue problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Znojil, J. Phys. A: Math. Gen. 30 (1997) 8771.CrossRefGoogle Scholar
  2. [2]
    J P. Killingbeck and M.N. Jones, J. Phys. A: Math. Gen. 19 (1986) 705.CrossRefGoogle Scholar
  3. [3]
    H. Taşeli and R. Eid, J. Phys. A: Math. Gen. 29 (1996) 6967.CrossRefGoogle Scholar
  4. [4]
    M.D. Radicioni, C.G. Diaz and F.M. Fernandez Int. J. Quant. Chem. 66 (1998) 261.CrossRefGoogle Scholar
  5. [5]
    F.T. Hioe, D. MacMillen and E.W. Montroll, Phys. Rep. 43 (1978) 305.CrossRefGoogle Scholar
  6. [6]
    T. Banks, C.M. Bender and T.T. Wu, Phys. Rev. D 8 (1973) 3346.CrossRefGoogle Scholar
  7. [7]
    R. Dutt, A. Gangopadhyaya and U.P. Sukhatme, Am. J. Phys. 65 (1997) 400.Google Scholar
  8. [8]
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972) pp. 773, 807.Google Scholar
  9. [9]
    H. Taşeli, J. Math. Chem. 20 (1996) 235.Google Scholar
  10. [10]
    H. Taşeli, Int. J. Quant. Chem. 63 (1997) 949.Google Scholar
  11. [11]
    T.K. Das and B. Chakrabarti, J. Phys. A: Math. Gen. 32 (1999) 2387.CrossRefGoogle Scholar
  12. [12]
    H. Taşeli and R. Eid, Int. J. Quant. Chem. 59 (1996) 183.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • H. Taşeli
    • 1
  • İnci M. Erhan
    • 1
  • Ö. Uğur
    • 1
  1. 1.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations