Journal of Solution Chemistry

, Volume 32, Issue 2, pp 117–135 | Cite as

Partial Molar Volumes of Amino Acids and Peptides in Aqueous Salt Solutions at 25°C and a Correlation with Stability of Proteins in the Presence of Salts

  • Sreelekha K. Singh
  • Nand Kishore


Partial molar volumes for a homologous series of amino acids and peptides have been measured in aqueous 1M sodium acetate, sodium thiocyanate, and sodium sulfate at 25°C. These data have been utilized in conjunction with the data in water to deduce partial molar volumes of transfer V2,m0(tr) from water to these aqueous salt solutions. The volumes of transfer for the amino acids and peptides are found to be positive. The interpretation is that this result arises from the dominant interaction of the sodium salts with the charged centers of amino acids and peptides. Thermal denaturation of the structurally homologous proteins lysozyme and α-lactalbumin has been studied in the presence of these salts. Significant thermal stabilization of hen egg-white lysozyme has been observed in the presence of sodium acetate and sodium sulfate. However, the thermal stabilization observed for α-lactalbumin is very small in the presence of these salts and sodium thiocyanate leads to a lowering of its thermal denaturation temperature. The rise in the surface tension of aqueous salt solutions with salt concentration has been correlated with the calorimetric and volumetric measurements. The results show that V2,m0(tr) depends less on the type of electrolyte than on the ionic strength of the solution. The V2,m0(tr) values correlate very well with the increase in the surface tension of aqueous salt solutions, indicating significant role of surface tension in interactions of amino acids, peptides, or protein with the salts.

Amino acids peptides partial molar volume aqueous salt solutions surface tension lysozyme α-lactalbumin 


  1. 1.
    K. Kuwajima, M. Mitani, and S. Sugai, J. Mol. Biol. 206, 547(1989).Google Scholar
  2. 2.
    B. T. Nall and K. L. Dill, in Conformations and Forces in Protein Folding, Washington, D.C. (American Association for the Advancement of Science, (1991), p. 169Google Scholar
  3. 3.
    P. H. Von Hippel and T. Schleich, Account. Chem. Res. 2, 257(1969).Google Scholar
  4. 4.
    S. Maldonado, M. P. Irun, L. A. Campos, J. A. Rubio, A. Luquita, A. Losato, R. Wang, E. B. Garcia-Morcno, and J. Sancho, Protein Sci. 11, 1260(2002).Google Scholar
  5. 5.
    C. Nishimura, V. N. Uversky, and A. L. Fink, Biochemistry 40, 2113(2001).Google Scholar
  6. 6.
    N. Kishore and R. Marathe, J. Chem. Thermodyn. 32, 413(2000).Google Scholar
  7. 7.
    D. G. Archer, J. Phys. Chem. Ref. Data 21, 793(1992).Google Scholar
  8. 8.
    G. Velicibi and J. M. Sturtevant, Biochemistry 18, 1180(1979).Google Scholar
  9. 9.
    M. J. Kronman and R. E. Andreotti, Biochemistry 3, 1145(1964).Google Scholar
  10. 10.
    W. H. Kirchhoff, EXAM (U. S. Department of Energy, Thermodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD)Google Scholar
  11. 11.
    Y. Kita, T. Arakawa, T-Y. Lin, and S. N. Timasheff, Biochemistry 33, 15178(1994).Google Scholar
  12. 12.
    R. Bhat and J. C. Ahluwalia, J. Phys. Chem. 89, 1099(1985).Google Scholar
  13. 13.
    A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86(1984).Google Scholar
  14. 14.
    T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer, J. Phys. Chem. 97, 1301(1993).Google Scholar
  15. 15.
    R. J. Millero, A. Lo Surdo, and C. Shim, J. Phys. Chem. 82, 784(1978).Google Scholar
  16. 16.
    G. Dipaola and B. Belleau, Can. J. Chem. 56, 1827(1978).Google Scholar
  17. 17.
    C. Jolicoeur, B. Riedl, D. Desrochers, L. L. Lemelin, Zamojska, and O. Enea, J. Solution Chem. 15, 109(1986).Google Scholar
  18. 18.
    C. Jolicoeur and B. Boileau, Can. J. Chem. 56, 2707(1978).Google Scholar
  19. 19.
    T. S. Banipal and P. Kapoor, J. Indian Chem. Soc. 76, 431(1999).Google Scholar
  20. 20.
    R. W. Gurney, Ionic Process in Solution (McGraw Hill, New York 1953)Google Scholar
  21. 21.
    H. S. Frank and M. W. Evans, J. Chem. Phys. 13, 507(1945).Google Scholar
  22. 22.
    H. L. Friedman and C. V. Krishnan, in Water-A Comprehensive Treatise, F. Franks, ed. Vol. 3, (Plenum, New York, 1973). Chap.Google Scholar
  23. 23.
    F. Franks, M. A. Quickenden, D. S. Reid, and B. Watson, Trans. Faraday Soc. 66, 582(1970).Google Scholar
  24. 24.
    F. Shahidi, P. G. Farrell, and J. T. Edwards, J. Solution Chem. 5, 807(1976).Google Scholar
  25. 25.
    S. Terasawa, H. Itsuki, and S. Arakawa, J. Phys. Chem. 79, 2345(1975).Google Scholar
  26. 26.
    A. Bondi, J. Phys. Chem. 68, 441(1964).Google Scholar
  27. 27.
    A. Bondi, J. Phys. Chem. 58, 929(1954).Google Scholar
  28. 28.
    P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol. 86, 665(1974).Google Scholar
  29. 29.
    Y. V. Griko, E. Friere, and P. L. Privalov, Biochemistry 33, 1889(1994).Google Scholar
  30. 30.
    Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC Press, Boca. Raton, 1999)Google Scholar
  31. 31.
    J. W. Gibbs, Trans. Conn. Acad. 3, 343(1878).Google Scholar
  32. 32.
    S. N. Timasheff, Preferential Interactions of Water and Cosolvents with Proteins: Protein-Solvent Interactions. R. B. Gregory, ed. (Marcel Dekker, New York, 1995), p. 455Google Scholar
  33. 33.
    K. R. Acharya, D. I. Stuart, N. P. C. Walker, M. Lewis, and D. C. Philips, J. Mol. Biol. 208, 99(1989).Google Scholar
  34. 34.
    B. Sabulal and N. Kishore, J. Chem. Soc. Faraday Trans. 93, 433(1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Sreelekha K. Singh
    • 1
  • Nand Kishore
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology Bombay, PowaiMumbai -India

Personalised recommendations