Genetic Resources and Crop Evolution

, Volume 50, Issue 2, pp 139–148 | Cite as

Development of a groundnut core collection using taxonomical, geographical and morphological descriptors

  • Hari D. Upadhyaya
  • Rodomiro Ortiz
  • Paula J. Bramel
  • Sube Singh


Groundnut (Arachis hypogaea L.) is an important oilseed crop cultivated in 96 countries of world.World crop productivity (1.30 t ha−1) is low. The available large variability contained in the germplasm accessions has not been adequately utilized in the crop improvement programs and most groundnut cultivars stand on a very narrow genetic base. This is due to lack of information on agronomic and other economic traits, which require extensive evaluation. The development of a core collection could facilitate easier access to groundnut genetic resources, enhance their use in crop improvement programs, and simplify the genebank management. This paper describes the development of a core collection from 14310 accessions of groundnut available from ICRISAT genebank. Germplasm accessions were stratified by country of origin within each of six botanical varieties. Data on 14 morphological descriptor traits were used for clustering by Ward's method. From each cluster ≈ 10 percent accessions were randomly selected to constitute a core collection consisting of 1704 accessions. Mean comparisons using 't' test and distribution using chi-square test and Wilcoxon's rank-sum non-parametric test on different descriptors indicated that the genetic variation available for these traits in the entire collection has been preserved in the core collection. The Shannon-Weaver diversity index for different traits was also similar in the entire collection and core collection. The important phenotypic correlations between different traits, which may be under the control of co-adapted gene complexes, were preserved in the core collection. This core collection provides an effective mechanism for the proper exploitation of groundnut germplasm resources for the genetic improvement of this crop.

Arachis hypogaea Core collection Diversity Groundnut Morphological descriptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basigalup D.H., Barnes D.K. and Stucker R.E. 1995. Development of a core collection for perennial Medicago plant introductions. Crop Sci. 35: 1163–1168.Google Scholar
  2. Brown A.H.D. 1989a. Core collections: a practical approach to genetic resources management. Genome 31: 818–824.Google Scholar
  3. Brown A.H.D. 1989b.The case for core collections. In: Brown A.H.D., Frankel O.H., Marshall D.R. and Williams J.T. (eds), The use of plant genetic resources. Cambridge Univ. Press, Cambridge, pp. 136–155.Google Scholar
  4. Brown A.H.D., Grace J.P. and Speer S.S. 1987. Designation of a core collection of perennial Glycine. Soybean Genet. Newsl. 14: 59–70.Google Scholar
  5. Cordeiro C.M.T., Morales E.A.V., Ferreira P., Rocha D.M.S., Costa I.R.S., Valois A.C.C. et al. 1995. Towards a Brazilian core collection of cassava. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 155–168.Google Scholar
  6. Diwan N., Bauchan G.R. and McIntosh M.S. 1994. A core collection for the United States annual Medicago germplasm collection. Crop Sci. 34: 279–285.Google Scholar
  7. Dussert S., Chabrillange N., Anthony F., Engelmann F., Recalt C. and Hamon S. 1997. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep. 16: 344–348.Google Scholar
  8. Dwivedi, S.L., Gurtu S., Chandra S., Upadhyaya H.D. and Nigam S.N. 2001. Assessment of genetic diversity among selected rosette virus resistant groundnut (Arachis hypogaea L.) germplasm. II. RAPD, AFLP, and phenotypic diversity. Unpublished.Google Scholar
  9. Erskine W. and Muehlbauer F.J. 1991. Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor. Appl. Genet. 83: 119–125.Google Scholar
  10. Frankel O.H. 1984. Genetic perspective of germplasm conservation. In: Arber W., Llimensee K., Peacock W.J. and Starlinger P. (eds), Genetic manipulations: impact on man and society. Cambridge University Press, Cambridge, pp. 161–170.Google Scholar
  11. Frankel O.H. and Brown A.H.D. 1984. Current plant genetic resources–a critical appraisal. In: Chopra V.L., Joshi B.C., Sharma R.P. and Bansal H.C. (eds), Genetics: new frontiers Vol. IV. Oxford & IBH Publ. Co., New Delhi, pp. p. 1–13.Google Scholar
  12. Food and Agriculture Organization of the United Nations 1998. Production Yearbook 52: 103–104.Google Scholar
  13. Hannan R.M., Kaiser W.J. and Muehlbauer F.J. 1994. Development and utilization of the USDA chickpea germplasm core collection. In: Agronomy Abstracts 1994. ASA, Madison, WI p. 217.Google Scholar
  14. Halward T.M., Stalker H.T., Larue E.A. and Kochert G. 1991. Genetic variation detectable with molecular markers among unadapted germ-;plasm resources of cultivated peanut and related wild species. Genome 34: 1013–1020.Google Scholar
  15. Halward T.M., Stalker H.T., Larue E.A. and Kochert G. 1992. Use of single-;primer DNA amplification in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18: 315–325.Google Scholar
  16. Halward T.M. and Wynne J.C. 1991. Generation means analysis for productivity in two diverse peanut crosses. Theor. Appl. Genet. 82: 784–792.Google Scholar
  17. He G. and Prakash C.S. 1997. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97: 143–149.Google Scholar
  18. Holbrook C.C., Anderson W.F. and Pittman R.N. 1993. Selection of core collection from the U.S. germplasm collection of peanut. Crop Sci. 33: 859–861.Google Scholar
  19. Hopkins M.S., Casa A.M., Wang T., Mtchell S.E., Dean R.E., Kochert G.D. et al. 1999. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci. 39: 1243–1247.Google Scholar
  20. Huaman Z., Aguilar C. and Ortiz R. 1999. Selecting a Peruvian sweet potato core collection on the basis of morphological, ecogeographical, and disease and pest reaction data. Theor. Appl. Genet. 98: 840–844.Google Scholar
  21. IBPGR & ICRISAT (1992). Descriptors for groundnut. Int. Board of Plant Genetic Resources, Rome, Italy, and Int. Crops Res. Inst. For the Semi-;Arid Tropics, Patancheru, A.P., IndiaGoogle Scholar
  22. Jiang H.F. and Duan N.X. 1998. Utilization of groundnut germ-;plasm resources in breeding programs. Crop Genetic Resources 2: 24–25.Google Scholar
  23. Knauft D.A. and Gorbet D.W. 1989. Genetic diversity among peanut cultivars. Crop Sci. 29: 1417–1422.Google Scholar
  24. Knupffer H. and van Hintum Th.J.L. 1995. The barley core collection: an international effort. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 171–178.Google Scholar
  25. Kochert G., Halward T., Branch W.D. and Simpson C.E. 1991. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81: 565–570.Google Scholar
  26. Kochert G., Stalker H.T., Gimenes M., Galgaro L., Romero Lopes C. and Moore K. 1996. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 83: 1282–1291.Google Scholar
  27. Krapovickas A. and Gregory W.C. 1994. Taxonomia del genero Arachis (Leguminosae). Bonplandia VIII: 1–187.Google Scholar
  28. Mahajan R.K., Bisht I.S., Agrawal R.C. and Rana R.S. 1996. Studies on south Asian okra collection: a methodology for establishing a representative core set using characterization data. Genet. Resour. Crop Evol. 43: 244–255.Google Scholar
  29. Milligan G.W. and Cooper M. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika. 50: 159–179.Google Scholar
  30. Mixon A.C. and Rogers K.M. 1973. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron. J. 65: 560–562.Google Scholar
  31. Ortiz R., Ruiz-;Tapia E.N. and Mujica-;Sanchez A. 1998. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor. Appl. Genet. 96: 475–483.Google Scholar
  32. Paik-;Rao O.G., Smith R.L. and Knauft D.A. 1992. Restriction fragment length polymorphism evaluation of 6 peanut species within the Arachis section. Theor. Appl. Genet. 84: 201–208.Google Scholar
  33. SAS Institute 1989. SAS/STAT User' Guide Version 6, 4th edn. SAS Institute, Inc., Cary, NC.Google Scholar
  34. Shannon C.E. and Weaver W. 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana.Google Scholar
  35. Singh A.K. and Simpson C.E. 1994. Biosystematics and genetic resources. In: Smartt J. (ed.), The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp. 96–137.Google Scholar
  36. Singh A.K. and Nigam S.N. 1997. Groundnut. In: Fuccillo D., Sears L. and Stapleton P. (eds), Biodiversity in trust–conservation and use of plant genetic resources in CGIAR centers. Cambridge Univ. Press, Cambridge, pp. 114–128.Google Scholar
  37. Skinner D.Z., Bauchan G.R., Auricht G. and Hughes S. 1999. A method for the efficient management and utilization of large germplasm collections. Crop Sci. 39: 1237–1242.Google Scholar
  38. Snedecor G.W. and Cochran W.G. 1980. Statistical methods. 7th edn. Iowa State Univ. Press, Ames.Google Scholar
  39. Subramanian V., Gurtu S., Nageswara Rao R.C. and Nigam S.N. 2000. Identification of DNA polymorphism in cultivated ground-;nut using random amplified polymorphic DNA (RAPD) assay. Genome 43: 656–660.Google Scholar
  40. Tohme J., Jones P., Beebe S. and Iwanaga M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. In: Hodgkin T., Brown A.H.D., van Hintum Th.J.L. and Morales B.A.V. (eds), Core collections of plant genetic resources. International Plant Genetic Resources Institute (IPGRI), John Wiley & Sons, New York, pp. 95–108.Google Scholar
  41. Upadhyaya H.D., Bramel P.J. and Singh S. 2001. Development of a chick pea core subset using geographic distribution and quantitative traits. Crop Sci. 41: 206–210.Google Scholar
  42. Ward J. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 38: 236–244.Google Scholar
  43. Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bull. 1: 80–83.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Hari D. Upadhyaya
    • 1
  • Rodomiro Ortiz
    • 1
  • Paula J. Bramel
    • 1
  • Sube Singh
    • 1
  1. 1.Genetic Resources and Enhancement Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Andhra PradeshIndia

Personalised recommendations