Bulletin of Experimental Biology and Medicine

, Volume 134, Issue 6, pp 528–530 | Cite as

Impairment of Learning and Memory after Photothrombosis of the Prefrontal Cortex in Rat Brain: Effects of Noopept

  • G. A. Romanova
  • F. M. Shakova
  • T. A. Gudasheva
  • R. U. Ostrovskaya
Article
  • 155 Downloads

Abstract

Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

photothrombosis prefrontal cortex Noopept conditioned passive avoidance response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. A. Andreeva, E. V. Stel'mashuk, N. K. Isaev, et al., Byull. Eksp. Biol. Med., 130,No. 10, 418–421 (2000).Google Scholar
  2. 2.
    A. R. Luriya, Higher Cortical Functions in Humans and Their Disturbances during Local Damage to the Brain [in Russian], Moscow (2000), p. 206.Google Scholar
  3. 3.
    R. U. Ostrovskaya, T. A. Gudasheva, T. A. Voronina, and S. B. Seredenin, Eksp. Klin. Farmakol., 65,No. 5, 66–72 (2002).Google Scholar
  4. 4.
    G. A. Romanova, I. V. Barskov, A. N. Sovetov, and I. V. Viktorov, Byull. Eksp. Biol. Med., 11,No. 12, 568–571 (1994).Google Scholar
  5. 5.
    G. A. Romanova, I. V. Barskov, R. U. Ostrovskaya, et al., Pat. Fiziol., No. 2, 8–10 (1998).Google Scholar
  6. 6.
    T. Yu. Smolina and T. Kh. Mirzoev, Tromboz Hemostaz Reologiya, No. 1, 120–122 (2002).Google Scholar
  7. 7.
    P. Eslinger and A. Damasio, Neurology, 35, 1731–1741 (1985).Google Scholar
  8. 8.
    B. Kolb, Brain Res. Rev., 8, 65–98 (1984).Google Scholar
  9. 9.
    R. U. Ostrovskaya, T. A. Gudasheva, S. S. Trofimov, et al., Biological Basis of Individual Sensitivity to Psychotropic Drugs, Eds. S. B. Seredenin et al., Edinburgh (1994), pp. 79–91.Google Scholar
  10. 10.
    R. U. Ostrovskaya, G. A. Romanova, S. S. Trofimov, et al., Behav. Pharmacol., 8, 261–268 (1997).Google Scholar
  11. 11.
    R. U. Ostrovskaya, G. A. Romanova, I. V. Barskov, et al., Ibid., 10, 549–553 (1999).Google Scholar
  12. 12.
    E. Solntseva, J. Bukanova, R. Ostrovskaya, et al., Gen. Pharmacol., 29, 85–89 (1997).Google Scholar
  13. 13.
    B. D. Watson, W. D. Dietrich, R. Busto, et al., Ann. Neurol., 17,No. 5, 497–504 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • G. A. Romanova
    • 1
  • F. M. Shakova
    • 1
  • T. A. Gudasheva
    • 1
  • R. U. Ostrovskaya
    • 1
  1. 1.Institute of General Pathology and Pathophysiology; Institute of PharmacologyRussian Academy of Medical SciencesMoscow

Personalised recommendations