Studia Logica

, Volume 73, Issue 2, pp 183–195 | Cite as

Multiple Kernel Contraction

  • Eduardo Fermé
  • Karina Saez
  • Pablo Sanz


This paper focuses on the extension of AGM that allows change for a belief base by a set of sentences instead of a single sentence. In [FH94], Fuhrmann and Hansson presented an axiomatic for Multiple Contraction and a construction based on the AGM Partial Meet Contraction. We propose for their model another way to construct functions: Multiple Kernel Contraction, that is a modification of Kernel Contraction, proposed by Hansson [Han94] to construct classical AGM contractions and belief base contractions. This construction works out the unsolved problem pointed out by Hansson in [Han99, pp. 369].

Logic of Theory Change Belief Bases Kernel Contraction Multiple Contraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AGM85]
    AlchourrÓn, C., P. GÄrdenfors, and D. Makinson, ‘On the logic of theory change: Partial meet functions for contraction and revision’, Journal of Symbolic Logic, 50:510–530, 1985.CrossRefGoogle Scholar
  2. [AM85]
    AlchourrÓn, C. and D. Makinson, ‘On the logic of theory change: Safe contraction’, Studia Logica, 44:405–422, 1985.CrossRefGoogle Scholar
  3. [FH94]
    Fuhrmann, A. and S. O. Hansson, ‘A survey of multiple contraction’, Journal of Logic, Language and Information, 3:39–74, 1994.CrossRefGoogle Scholar
  4. [Fuh88]
    Fuhrmann, A. Relevant Logics, Modal Logics and Theory Change, PhD thesis, Australian National University, Camberra, 1988.Google Scholar
  5. [GM88]
    GÄrdenfors, P. and D. Makinson, ‘Revisions of knowledge systems using epistemic entrenchment’, in M. Y. Vardi (ed.), Proceedings of the Second Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 83–95, Morgan Kaufmann, Los Altos, 1988.Google Scholar
  6. [Han92]
    Hansson, S. O., ‘In defense of base contraction’, Synthese, 91:239–245, 1992.CrossRefGoogle Scholar
  7. [Han94]
    Hansson, S. O., ‘Kernel contraction’, Journal of Symbolic Logic, 59:845–859, 1994.CrossRefGoogle Scholar
  8. [Han99]
    Hansson, S. O., ‘A survey of non-prioritized belief revision’, Erkenntnis, 1999.Google Scholar
  9. [Nie91]
    NiederÉe, R., ‘Multiple contraction: A further case against Gärdenfors' principle of recovery’, in Fuhrmann and Morreau (eds), The Logic of Theory Change, pp. 322–334, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Eduardo Fermé
    • 1
  • Karina Saez
    • 2
  • Pablo Sanz
    • 1
  1. 1.Departamento de MatemàticaUniversidade da Madeira, Campus Universitário da Penteada 9000-390 FunchalMadeiraPortugal
  2. 2.Departamento de ComputaciónUniversidad de Buenos Aires, Pabellón I. Ciudad Universitaria. (1429)Buenos AiresArgentina

Personalised recommendations