Journal of Chemical Ecology

, Volume 29, Issue 4, pp 859–880 | Cite as

Qualitative and Quantitative Variation in Monoterpene Co-Occurrence and Composition in the Essential Oil of Thymus vulgaris Chemotypes

  • John D. Thompson
  • Jean-Claude Chalchat
  • André Michet
  • Yan B. Linhart
  • Bodil Ehlers


Thymus vulgaris has a chemical polymorphism with six different chemotypes that show marked spatial segregation in nature. Although some populations have a single chemotype in majority, many have two or three chemotypes. In this study we analyze the quantitative variation among T. vulgaris populations in the percentage of oil composed of the dominant monoterpene(s) for each chemotype. In general, phenolic chemotypes (thymol and carvacrol), which occur at the end of the biosynthetic chain, have a significantly lower proportion of their oil composed of their dominant monoterpene than nonphenolic chemotypes (geraniol, α-terpineol, and linalool). This is due to the presence of high amounts of precursors (γ-terpinene and paracymene) in the oil of phenolic chemotypes. The essential oil of the nonphenolic thuyanol chemotype has four characteristic monoterpenes that together make up a lower proportion of the oil than the single dominant monoterpene of the other nonphenolic chemotypes. For all chemotypes, the percentage composition of the dominant monoterpene decreased significantly at sites where the chemotype is not the majority type. This decrease is correlated with a significant increase in either the proportion of the two precursors for the thymol chemotype or the monoterpenes characteristic of the other chemotypes at the site. The latter result suggests that a plant with dominant genes is responsible for the production of different monoterpenes can produce several molecules.

Lamiaceae Mediterranean adaptation essential oil composition monoterpene production polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, W. R. and Croteau, R. 1992. Comparison of two monoterpene cyclases isolated from higher plants; γ-terpinene synthase from Thymus vulgaris and limonene synthase from Mentha x piperita, pp. 239–251, in R. J. Petroski and S. P. McCormick (Eds.). Secondary-Metabolite Biosynthesis and Metabolism. Plenum Press, New York.Google Scholar
  2. Beker, R., Dafni, A., Eisikowitch, D., and Ravid, U. 1989. Volatiles of two chemotypes of Majorana syriaca L. (Labiatae) as olfactory cues for the honeybee. Oecologia 79:446–451.Google Scholar
  3. Bergstrom, G. 1978. Role of volatile chemicals in Ophrys–pollinator interactions, pp. 207–231, in J. B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London, United Kingdom.Google Scholar
  4. Bryant, J. P., Provenza, F. D., Pastor, J., Reichardt, P. B., Clausen, T. P., and Toit, J. T. (du). 1991. Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu. Rev. Ecol. Syst. 22:431–446.Google Scholar
  5. Gouyon, P. H., Vernet, P., Guillerm, J. L., and Valdeyron, G.. 1986. Polymorphisms and environment: the adaptive value of the oil polymorphisms in Thymus vulgaris L. Heredity 57:59–66.Google Scholar
  6. Granger, R. and Passet, J. 1971. Types chimiques de l'espèceThymus vulgaris L. C. R. Acad. Sci. Paris 273:2350–2353.Google Scholar
  7. Granger, R. and Passet, J. 1973. Thymus vulgaris L. spontané de France: races chimiques et chemotaxonomie. Phytochemistry 12:1683–1691.Google Scholar
  8. Granger, R., Passet, J., and Verdier, R. 1965. Présence et rôle du gamma-terpinène dans Thymus vulgaris L. Bull. Trav. Soc. Pharm. Lyon 11:113–119.Google Scholar
  9. Granger, R., Passet, J., and Girard, J. P. 1972. Methyl-2 methylene-6 octadiene-2,7 ol isole de Thymus vulgaris. Phytochemistry 11:2301–2305.Google Scholar
  10. Granger, R., Passet, J., and Teulade-Arbousset, G. 1973. Plantes medicinales à essence et chimiotaxonomie. Riv. Ital. 55:353–356.Google Scholar
  11. Grime, J. P., Cornelissen, J. H. H. C., Thompson, K., and Hodgson, J. G. 1996. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494.Google Scholar
  12. Hanover, J. W. 1966. Genetics of terpenes. I. Gene control of monoterpene levels in Pinus monticola Dougl. Heredity 21:73–84.Google Scholar
  13. Kokkini, S. and Vokou, D. 1989. Mentha spicata chemotypesgrowing wild in Greece. Econ. Bot. 43:192–202.Google Scholar
  14. Lincoln, D. E. and Langenheim, J. H. 1976. Geographic patterns of monoterpenoid composition in Satureja douglasii. Biochem. Syst. Ecol. 4:237–248.Google Scholar
  15. Linhart, Y. B. and Thompson, J. D. 1999. Thyme is of the essence: biochemical variability and multi-species deterence. Evol. Ecol. Res. 1:151–171.Google Scholar
  16. McPherson, J. K. and Muller, C. H. 1969. Allelopathic effects of Adenostoma fasiculatum, “chamise,” in the California chaparral. Ecol. Monogr. 39:177–198.Google Scholar
  17. Mihaliak, C. A., Couvet, D., and Lincoln, D. E. 1989. Genetic and environmental contributions to variation in leaf mono-and sesquiterpenes of Heterotheca subaxillaris. Biochem. Syst. and Eco. 17:529–533.Google Scholar
  18. Mithen, R., Raybould, A. F., and Giamoustaris, A. 1995. Divergent selection for secondary matabolites between wild populations of Brassica oleracea and its implications for plant-herbivore interactions. Heredity 75:472–484.Google Scholar
  19. Murray, M. J. and Lincoln, D. E. 1970. The genetic basis of acyclic oil constituents in Mentha citrata Ehrh. Genetics 65:457–471.Google Scholar
  20. Muzika, R.-M. 1993. Terpenes and phenolics in response to nitrogen fertilization: a test of the carbon/nutrient hypothesis. Chemoecology 4:3–7.Google Scholar
  21. Passet, J. 1971. Thymus vulgaris L.: Chémotaxonomie et biogénèse monoterpénique. Thèse de Doctorat. Faculté de Pharmacie, Montpellier, France.Google Scholar
  22. Pichersky, E. and Gang, D. R. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5:439–445.Google Scholar
  23. Rice, W. R. 1989. Analysing tables of statistical tests. Evolution 43:223–225.Google Scholar
  24. Richardson, P. M. 1992. The chemistry of the Labiatae: an Introduction and overview, pp. 291–297 in R. M. Harley and T. Reynolds (Eds.). Advances in Labiate Science. Royal Botanic Gardens, Kew, United Kingdom.Google Scholar
  25. Ross, J. D. and Sombrero, C. 1991. Environmental control of essential oil production in Mediterranean plants, pp. 83–94, in J. B. Harborne and F. A. Tomas-Barberan, (Eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  26. Sas. 1999. SAS/STAT Users guide. SAS, Cary, North Carolina.Google Scholar
  27. Seufert, G., Kotzias, D., Spartà, C., and Versino, B. 1995. Volatile organics in mediterranean shrubs and their potential role in a changing environment, pp. 343–370 in J. M. Moreno and W. C. Oechel, (Eds.). Global Change and Mediterranean Type Ecosytems. Springer, New York.Google Scholar
  28. Shonle, I. and Bergelson, J. 2000. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 54:778–788.Google Scholar
  29. Simeon De Bouchberg, M., Allegrini, J., Bessiere, C., Attisso, M., Passet, J., and Granger, R. 1976. Proprietès microbiologiques des huiles essentielles de chimiotypes de Thymus vulgaris Linaeus. In Estratto dalla Rivista Italiana Essenze, Profumi, Piante officinali, Aromi, Saponi, Cosmetici, Aerosol.Google Scholar
  30. Stahl-Biskup, E. 2002. Essential oil chemistry of the genus Thymus—a global view, In E. Stahl-Biskup, and F. Saez (Eds.). Thyme: The genus Thymus. Taylor & Francis, London, pp. 75–124.Google Scholar
  31. Tarayre, M., Thompson, J. D., Escarré, J., and Linhart, Y. B. 1995. Intra-specific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia 101:110–118.Google Scholar
  32. Thompson, J. D. 2002. Population structure and the spatial dynamics of genetic polymorphism in thyme. In E. Stahl-Biskup, and F. Saez (Eds.). Thyme: The genus Thymus. Taylor & Francis, London, pp. 44–74.Google Scholar
  33. Thompson, J. D., Manicacci, D., and Tarayre, M. 1998. Thirty five years of thyme: a tale of two polymorphisms. Bioscience 48:805–815.Google Scholar
  34. Vernet, P., Guillerm, J. L., and Gouyon, P. H. 1977a. Le polymorphisme chimique de Thymus vulgaris L. (Labiée) I. Repartition des formes chimiques en relation avec certains facteurs écologiques. Oecol. Plant. 12:159–179.Google Scholar
  35. Vernet, P., Guillerm, J. L., and Gouyon, P. H. 1977b. Le polymorphisme chimique de Thymus vulgaris L. (Labiée) II. Carte à l'echelle 1/25000 des formes chimiques dans la région de Saint-Martin-de-Londres (Herault-France). Oecol. Plant. 12:181–194.Google Scholar
  36. Vernet, P., Gouyon, P. H., and Valdeyron, G. 1986. Genetic control of the oil content in Thymus vulgaris L.: a case of polymorphism in a biosynthetic chain. Genetica 69:227–231.Google Scholar
  37. Vokou, D. and Margaris, N. S. 1984. Effects of volatile oils from aromatic shrubs on soil microorganisms. Soil Biol. Biochem. 16:509–513.Google Scholar
  38. Vokou, D., Kokkini, S., and Bessiere, J. M. 1993. Geographic variation of Greek Oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 21:287–295.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • John D. Thompson
    • 1
  • Jean-Claude Chalchat
    • 2
  • André Michet
    • 2
  • Yan B. Linhart
    • 3
  • Bodil Ehlers
    • 1
  1. 1.Centre d'Ecologie Fonctionnelle et Evolutive, CNRSMontpellier Cedex 5France
  2. 2.Laboratoire de Chimie des Huiles EssentiellesUniversité Blaise Pascal de Clermont Campus des CézeauxAubière cedexFrance
  3. 3.Department of Environmental Population and Organismic Biology N122 RamaleyBoulderUSA

Personalised recommendations