Optical and Quantum Electronics

, Volume 35, Issue 4–5, pp 407–427

Finite difference scheme for planar waveguides with arbitrary index profiles and its implementation for anisotropic waveguides with a diagonal permitivity tensor

Article

Abstract

A finite difference scheme with a uniform mesh for planar waveguides with arbitrary refractive index profiles that takes full account of any smooth index variation and index discontinuity is derived for TE and TM-polarized waves. Discretizations that lead to a second-order error in the effective indices are given for TE and TM polarizations. At the computational boundaries, transparent boundary conditions are used. The scheme was implemented for anisotropic waveguides with a diagonal permitivity tensor and examined by using samples with various refractive index profiles, ranging from simple step- and graded-index up to complicated refractive index profile structures composed of either isotropic or anisotropic materials. For simple cases where the results of other methods are available in the literature, the proposed scheme shows very good agreement.

anisotropic waveguide arbitrary index discretization finite difference interface correction transparent boundary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, P.L. and S.I. Najafi, App. Opt. 33 3333, 1994.Google Scholar
  2. Chiou, Y.P., Y.C. Chiang and H.C. Chang, J. Lightwave Technol. 18 243, 2000.Google Scholar
  3. Conwell, E.M. Appl. Phys. Lett. 23 328, 1973.Google Scholar
  4. de Michele, M. J. Opt. Commun. 4 25, 1983.Google Scholar
  5. Goyal, I.C., R. Jindal and A.K. Ghatak, J. Lightwave Technol. 15 179, 1997.Google Scholar
  6. Hernandez-Figueroa, H.E., F.A. Fernandez, Y. Lu and J.B. Davies, Trans. Mag. 31 1710, 1995.Google Scholar
  7. Hoekstra, H.J.W.M. et al. J. Opt. Soc. Am. B 14 1823, 1997.Google Scholar
  8. Hoekstra, H.J.W.M., G.J.M. Krijnen and P.V. Lambeck, J. Lightwave Technol. 10 1352, 1992.Google Scholar
  9. Jamid, H.A. and M.N. Akram, J. Lightwave Technol. 19 398, 2001.Google Scholar
  10. Katsriku, F.A., B.M.A. Rahman and K.T.V. Grattan, J. Lightwave Technol. 14 780, 1996.Google Scholar
  11. Korkishko, Y.N., V.A. Fedorov and O.Y. Feoktistova, J. Lightwave Technol. 18 562, 2000.Google Scholar
  12. Kuester, E.F. and D.C. Chang, Microwave Theory and Technol. MTT-23 98, 1975.Google Scholar
  13. Lui, W.W., K. Yokoyama and W.P. Huang, J. Sel. Topics Quantum Elect. 2 174, 1996.Google Scholar
  14. Mishra, P.K. and A. Sharma, J. Lightwave Technol. LT-4 204, 1986.Google Scholar
  15. Remley, K.A. and A. Weisshaar, J. Lightwave Technol. 13 2372, 1995.Google Scholar
  16. Sharma, A. and P. Bindal, J. Quantum Elect. 29 150, 1993.Google Scholar
  17. Stoffer, R. and H.J.W.M. Hoekstra, Opt. Quantum Elect. 30 375, 1998.Google Scholar
  18. Uranus, H.P., H.J.W.M. Hoekstra and E.W.C. van Groesen, Perturbation analysis of FD mode solving with unequal order of discretization error. Internal technical report, LDG & AAMP, University Twente, 2002a.Google Scholar
  19. Uranus, H.P., H.J.W.M. Hoekstra and E.W.C. van Groesen, Second-order finite difference discretization for TM polarization of anisotropic planar waveguides with arbitrary index profiles. Internal technical report, LDG & AAMP, University Twente, 2002b.Google Scholar
  20. Yamauchi, J. et al. Photonics Tech. Lett. 9 961, 1997.Google Scholar
  21. Vassallo, C. IEE Proc. J. 139 137, 1992.Google Scholar
  22. Vassallo, C. J. Opt. Soc. Am. A 14 3273, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H.P. Uranus
    • 1
    • 2
  • H.J.W.M. Hoekstra
    • 1
  • E. van Groesen
    • 2
  1. 1.Lightwave Devices Group, MESA+ Research InstituteUniversity of TwenteAE EnschedeThe Netherlands
  2. 2.Applied Analysis and Mathematical Physics Group, MESA+ Research InstituteUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations