Water, Air, and Soil Pollution

, Volume 144, Issue 1–4, pp 317–332 | Cite as

Effects of Two Different Ozone Exposure Regimes on Chlorophyll and Sucrose Content of Leaves and Yield Parameters of Sugar Beet (Beta Vulgaris L.) and Rape (Brassica Napus L.)

  • B. Köllner
  • G. H. M. Krause


Sugar beet (Beta vulgaris cv. Loretta) and rape (Brassica napus cv. Licolly) plants were exposed under equaldose conditions in closed fumigation chambers under twodifferent ozone (O3) pattern: Var130 (17:00–09:00 h: 40 μg O3 m-3; 09:00–17:00 h: 130μgO3 m-3) and Var220 (16:00-12:00 h: 40 μgO3 m-3; 12:00–16:00 h: 220μg O3 m-3).Control plants were exposed under carbon filtered airconditions (ozone free, CF-control). Sugar beet plants wereexposed four weeks each during 6-leaf-stage and lateralgrowth respectively. Rape plants were exposed for 14 daysduring flowering (f) or as young plants (y). In between andafter the end of exposure, plants were kept in carbonfiltered air (CF; < 10 μg O3 m-3). With respect to sucrose and chlorophyll content of leaves andseed weight, rape plants were most sensitive duringflowering. Under equal dose conditions, the most pronouncedeffects on chlorophyll and sucrose content of leaves as wellas fresh weight of taproots (CF: 100%; Var130: 97%;Var220: 83%) and of rape seeds (CF: 100%; y:Var130: 122%; Var220: 99%; f: Var130: 84%;Var220: 78%) were detected after exposure under shorttime high ozone peak conditions (Var220). Howeverglucose content in taproots (CF: 100%; Var130: 43%;Var220: 79%) and fatty acid content in rape seeds wasaffected most after exposure to moderate ozone peaks(Var130). Var130-plants seem to recover better fromozone stress than Var220-plants, but glucose content oftaproots and fatty acid content of rape seeds indicate long-lastingeffects especially in Var130-plants.Although experiments were conducted in a closed chambersystem it can be concluded, that current ozone concentrationscan induce adverse effects on these crops.

carbohydrates chlorophyll dose-response relationship ozone rape (Brassica napusrecovery stage of development sugar beet (Beta vulgarisyield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balaguer, L., Barnes, J-D., Panicucci, A. and Borland, A. M.: 1995, ‘Production and utilization of assimilates in wheat (Triticum aestivum L.) leaves exposed to elevated O3 and/or CO2’, New Phytol. 129, 557-568.Google Scholar
  2. Bastrup-Birk, A. and Mortensen, L.: 1997, ‘Effect of Ozone on Vegetation’, in J. Fenger (ed.), Photochemical Air Pollution, NERI Technical Report No. 199, pp. 103-133.Google Scholar
  3. Beck, J. P.; Krzyanowski, M. and Koffi, B.: 1999, ‘Tropospheric Ozone in the European Union. The Consoliodated Report. Report to the European Commission by the European Environment Agency European Topic Centre on Air Quality in the Framework of Council Directive 92/72/EEC on Air Pollution by Ozone, European Communities, ISBN 92-828-5672-0, 29-40.Google Scholar
  4. Bender, J., Bramm, A. and Weigel, H. J.: 1999, ‘On the Importance of Cultivar, Growth Duration, Sink Capacity and Yield Quality for the Sensivity of Sugar Beet to Ozone’, in J. Fuhrer and B. Achermann (eds), Critical Levels for Ozone-Level II. Environmental Documentation No. 115. Swiss Agency for Environment, Forest Landscape, Bern, Switzerland.Google Scholar
  5. Bosac, C., Black, V. J., Roberts, J. A. and Black, C. R.: 1998, ‘Impact of ozone on seed yield and quality and seedling vigour in oilseed rape (Brassica napus L.)’, J. Plant Physiol. 153, 127-134.Google Scholar
  6. DZZ: 2000, Die Zuckerrübenzeitung Nr. 2, Februar 2000, pp. 2-2.Google Scholar
  7. Elstner, E. F. and Hippeli S.: 1995, ‘Schadstoffe aus der Luft’ in: B. Hock and E. F. Elstner (eds), Schadwirkungen auf Pflanzen, Spektrum Akad. Verlag, Heidelberg, Berlin, New York, pp. 79-117.Google Scholar
  8. FAOSTAT: 1998, [01.08.2000].Google Scholar
  9. Finnan, J. M., Burke, J. I. and Jones, M. B.: 1997, ‘A note on a non-destructive method of chlorophyll determination in wheat (Triticum aestivum L.)’, Irish J. Agric. Food Res. 36, pp. 85-89.Google Scholar
  10. Finnan, J. M., Jones, M. B. and Burke, J. I.: 1998, A time-concentration study on the effects of ozone on spring wheat (Triticum aestivum L.). 3. Effects on leaf area and flag leaf senescence’, Agric. Ecosys. Environ. 69, 27-35.Google Scholar
  11. Frauen, M.: 1996,‘Öl-und Hülsenfruchtbau’, in: K.-U. Heyland (ed.), Landwirtschaftliches Lehrbuch. Spezieller Pflanzenbau, Ulmer Verlag, Stuttgart, pp. 101-133.Google Scholar
  12. Grünhage, L., Jäger, H.-J., Haenel, H.-D., Hanewald, K. and Krupa, S.: 1997, ‘PLATIN (PLant-ATmosphere INteraction) II: Co-occurrence of high ambient ozone concentrations and factors limiting plant absorbed dose’, Environ. Pollut. 98, 51-60.Google Scholar
  13. Hambüchen, T. (ed.): 1999, ‘Agrarmärkte in Zahlen. Ausgabe Deutschland 1999’, ZMP Zentrale Markt-und Preisberichtstelle für Erzeugnisse der Land-, Forst-und Ernährungswirtschaft GmbH, Bonn.Google Scholar
  14. Hoffmann-Thoma, G., Hinkel, K., Nicolay, P. and Willenbrink, J.: 1996, ‘Sucrose accumulation in sweet sorghum stem internodes in relation to growth’, Physiol. Plant. 97, 277-284.Google Scholar
  15. ISO 5511: 1992, ‘Oilseeds - Determination of Oil Content - Method using Continuous-Wave Low-Resolution Nuclear Magnetic Resonance Spectrometry (rapid Method)’, Scholar
  16. Köllner, B. and Meyer, U.: 1998, Neue Ergebnisse zurWirkung von Ozon aufWachstum und Ertrag landwirtschaftlicher Nutzpflanzen', in: Jahresbericht 1997, Essen: LUANRW.Google Scholar
  17. Köllner, B. and Krause, G. H. M.: 2000, ‘Changes in carbohydrates, leaf pigments and yield in potatoes induced by different ozone exposure regimes’, Agric. Ecosys. Environ. 78, 149-158.Google Scholar
  18. Marschner, H.: 1995, Mineral Nutrition of Higher Plants, Academic Press, Harcourt Brace & Company Publishers, 898 pp.Google Scholar
  19. Meyer, U., Köllner, B., Willenbrink, J. and Krause, G. H. M.: 1997, ‘Physiological changes on agricultural crops induced by different ambient ozone regimes I. Effects on phytosynthesis and assimilate allocation in spring wheat’, New. Phytol. 136, 645-652.Google Scholar
  20. Meyer, U., Köllner, B., Willenbrink, J. and Krause, G. H. M.: 2000, ‘Effects of different ozone exposure regimes on phytosynthesis, assimilates and thousand grain weight in spring wheat’, Agric. Ecosys. Environ. 78, 49-55.Google Scholar
  21. Mills, G., Hayes, F., Buse, A. and Reynolds, B.: 2000, ‘Air Pollution and Vegetation’, UNECE ICP Vegetation Annual Report 1999/2000, ISBN 1 870393 55 4.Google Scholar
  22. Mortensen, L. and Engvild, K. C.: 1995, ‘Effects of ozone on 14C translocation velocity and growth of spring wheat (Triticum aestivum L.) exposed in open-top chambers’, Environ. Pollut. 87, 135- 140.Google Scholar
  23. Mulholland, B. J., Craigon, J., Black, C. R., Colls, J. J., Atherton, J. and Landon, G.: 1998, ‘Effects of elevated CO2 and O3 on the Rate and Duration of Grain Growth and Harvest index in Spring Wheat (Triticum aestivum L.)’, Glob. Change Biol. 4, 627-635.Google Scholar
  24. Musselmann, R. C., Younglove, T. and McCool, P. M.: 1994, ‘Response of Phaseolus vulgaris L. to differing ozone regimes having identical total exposure’, Atmos. Environ. 28, 2727-2731.Google Scholar
  25. Nie, G.-Y., Tomasevic, M. and Baker, N. R.: 1993, ‘Effects of ozone on the photosynthetic apparatus and leaf proteins during development in wheat’, Plant Cell Environ. 16, 643-651.Google Scholar
  26. Ollerenshaw, J. H., Lyons, T. and Barnes, J. D.: 1999, ‘Impacts of ozone on the growth and yield of field-grown winter oilseed rape’, Environ. Pollut. 104, 53-59.Google Scholar
  27. Pleijel, H., Skärby, L., Wallin, G. and Sellden, G.: 1995, ‘A process-oriented explanation of the nonlinear relationship between grain yield of wheat and ozone exposure’, New Phytol. 131, 241-246.Google Scholar
  28. Sandelius, A. S., Näslund, K., Carlsson, A., Pleijel, H. and G. Sellden: 1995, ‘Exposure of spring wheat (Triticum aestivum L.) to ozone in open-top chambers. Effect on acyl lipid composition and chlorophyll content of flag leaves’, New. Phytol. 131, 231-239Google Scholar
  29. Tiedemann, A. v.: 1992a, ‘Ozone effects on fungal leaf diseases of wheat in relation to epidemiology. I. Necrotrophic pathogens’, J. Phytopathol. 134, 177-186.Google Scholar
  30. Tiedemann, A. v.: 1992b, ‘Ozone effects on fungal leaf diseases of wheat in relation to epidemiology. II. Biotrophic pathogens’, J. Phytopathology 134, 187-197.Google Scholar
  31. Tonneijck, A. E. G.: 1994, ‘Effects of various ozone exposures on the susceptibility of bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea’, Environ. Pollut. 85, 59-65.Google Scholar
  32. Treshow, M. and Anderson, F. K.: 1989, Plant Stress from Air Pollution, John Wiley and Sons, New York.Google Scholar
  33. Umweltbundesamt (ed.): 1998 (July), Hintergrundinformation: Sommersmog, Pressemitteilung des UBA (Federal Environmental Agency), Berlin, Germany.Google Scholar
  34. Venken, M., Asard, A., Geuns, J. M. C., Caubergs, R. and De Greef, J. A.: 1991, ‘Senescence of oat leaves: changes in the free sterol composition and enzyme activities of the plasma membrane’, Plant Science 79, 3-11.Google Scholar
  35. ZMP: 1999a, Zentrale Markt-und Preisberichtsstelle, ZMP-Nachrichten 92/99 (19.11.99), [17.8.2000].Google Scholar
  36. ZMP: 1999b, Zentrale Markt-und Preisberichtsstelle, ZMP-Nachrichten 97/99 (7.12.99), [17.8.2000].Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Köllner
    • 1
  • G. H. M. Krause
    • 1
  1. 1.Landesumweltamt Nordrhein-Westfalen (LUA NRW)EssenGermany

Personalised recommendations