Solar Physics

, Volume 212, Issue 1, pp 165–200 | Cite as

Photospheric and heliospheric magnetic fields

  • Carolus J. Schrijver
  • Marc L. DeRosa


The magnetic field in the heliosphere evolves in response to the photospheric field at its base. This evolution, together with the rotation of the Sun, drives space weather through the continually changing conditions of the solar wind and the magnetic field embedded within it. We combine observations and simulations to investigate the sources of the heliospheric field from 1996 to 2001. Our algorithms assimilate SOHO/MDI magnetograms into a flux-dispersal model, showing the evolving field on the full sphere with an unprecedented duration of 5.5 yr and temporal resolution of 6 hr. We demonstrate that acoustic far-side imaging can be successfully used to estimate the location and magnitude of large active regions well before they become visible on the solar disk. The results from our assimilation model, complemented with a potential-field source-surface model for the coronal and inner-heliospheric magnetic fields, match Yohkoh/SXT and KPNO/He 10830 Å coronal hole boundaries quite well. Even subject to the simplification of a uniform, steady solar wind from the source surface outward, our model matches the polarity of the interplanetary magnetic field (IMF) at Earth ∼3% of the time during the period 1997–2001 (independent of whether far-side acoustic data are incorporated into the simulation). We find that around cycle maximum, the IMF originates typically in a dozen disjoint regions. Whereas active regions are often ignored as a source for the IMF, the fraction of the IMF that connects to magnetic plage with absolute flux densities exceeding 50 Mx cm−2 increases from ≲10% at cycle minimum up to 30–50% at cycle maximum, with even direct connections between sunspots and the heliosphere. For the overall heliospheric field, these fractions are ≲1% to 20–30%, respectively. Two case studies based on high-resolution TRACE observations support the direct connection of the IMF to magnetic plage, and even to sunspots. Parallel to the data assimilation, we run a pure simulation in which active regions are injected based on random selection from parent distribution functions derived from solar data. The global properties inferred for the photospheric and heliospheric fields for these two models are in remarkable agreement, confirming earlier studies that no subtle flux-emergence patterns or field-dispersal properties are required of the solar dynamo beyond those that are included in the model in order to understand the large-scale solar and heliospheric fields.


Solar Wind Coronal Hole Interplanetary Magnetic Field Cycle Maximum Solar Dynamo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (527.8 mb)
Supplementary material, approximately 527 MB.


  1. Altschuler, M., Trotter, D., and Orrall, F.: 1972, Solar Phys. 26, 354.CrossRefADSGoogle Scholar
  2. Axford, W. I. and McKenzie, J. F.: 1991, Solar Wind Seven, Proceedings of the 3rd COSPAR Colloquium, p. 1.Google Scholar
  3. Balogh, A. and Smith, E. J.: 2001, Space Sci. Rev. 97, 147.CrossRefADSGoogle Scholar
  4. Berger, T. E. and Lites, B. W.: 2002, Solar Phys., in preparation.Google Scholar
  5. Brajša, R., Wöhl, H., Vršnak, B., Ruždjak, D., Sudar, D., Roša, D., and Hržina, D.: 2002, Solar Phys. 206, 241.Google Scholar
  6. Braun, D. C. and Lindsey, C.: 2001, Astrophys. J. 560, L189.CrossRefADSGoogle Scholar
  7. Brouwer, M. P. and Zwaan, C.: 1990, Solar Phys. 129, 221.CrossRefADSGoogle Scholar
  8. DeVore, C. R., Sheeley, N. R., and Boris, J. P.: 1984, Solar Phys. 92, 1.CrossRefADSGoogle Scholar
  9. DeVore, C. R., Sheeley, N. R., Boris, J. P., Young, T. R., and Harvey, K. L.: 1985, Aust. J. Phys. 38, 999.ADSGoogle Scholar
  10. Golub, L. and Pasachoff, J.: 1997, The Solar Corona, Cambridge University Press, Cambridge.Google Scholar
  11. Gosling, J. T.: 1996, Ann. Rev. Astron. Astrophys. 34, 35.CrossRefADSGoogle Scholar
  12. Hagenaar, H. J., Schrijver, C. J., Title, A. M., and Shine, R. A.: 1999, Astrophys. J. 511, 932.CrossRefADSGoogle Scholar
  13. Handy, B. N., Acton, L. W., Kankelborg, C. C. et al.: 1999, Solar Phys. 187, 229.CrossRefADSGoogle Scholar
  14. Harvey, K. L.: 1993, Ph.D. Thesis, Astronomical Institute, Utrecht University.Google Scholar
  15. Harvey, K. L. and Zwaan, C.: 1993, Solar Phys. 148, 85.CrossRefADSGoogle Scholar
  16. Hoeksema, J. T.: 1984, Ph.D. Thesis, Stanford University, Stanford, Ca.Google Scholar
  17. Huber, M., Foukal, P., Noyes, R., Reeves, E., Schmahl, E., Timothy, J., Vernazza, J., and Withbroe, G.: 1974, Astrophys J. 194, L115.CrossRefADSGoogle Scholar
  18. Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind,Springer-Verlag, Berlin.Google Scholar
  19. Kahler, S.W. and Hudson, H. S.: 2001, J. Geophys. Res. 106, 29239.ADSGoogle Scholar
  20. Komm, R. W., Howard, R. F., and Harvey, J. W.: 1993, Solar Phys. 147, 207.CrossRefADSGoogle Scholar
  21. Leighton, R. B.: 1964, Astrophys. J. 140, 1547.CrossRefADSzbMATHGoogle Scholar
  22. Levine, R. H.: 1982, Solar Phys. 79, 203.CrossRefADSGoogle Scholar
  23. Levine, R. H., Altschuler, M. D., Harvey, J. W., and Jackson, B. V.: 1977, Astrophys. J. 215, 636.CrossRefADSGoogle Scholar
  24. Lindsey, C. and Braun, D. C.: 2000, Solar Phys. 192, 261.CrossRefADSGoogle Scholar
  25. Lockwood, M.: 2002, Astron. Astrophys. 382, 678.CrossRefADSGoogle Scholar
  26. Luhmann, J. G., Li, Y., Arge, N., Gazis, P. R., and Ulrich, R.: 2002, J. Geophys. Res. 107, 10.1029.CrossRefGoogle Scholar
  27. Mosher, J. M.: 1977, The Magnetic History of Solar Active Regions, CalTech, Pasadena, Ca.Google Scholar
  28. Ness, N. F. and Wilcox, J. M.: 1964, Phys. Rev. Lett. 13, 461.CrossRefADSGoogle Scholar
  29. Neugebauer, M., Forsyth, R. J., Galvin, A. B. et al.: 1998, J. Geophys. Res. 103, 14587.CrossRefADSGoogle Scholar
  30. Neugebauer, M., Liewer, P. C., Smith, E. J., Skoug, R. M., and Zurbuchen, T. H.: 2002, J. Geophys. Res., in press.Google Scholar
  31. Parker, E. N.: 1958, Astrophys. J. 128, 669.ADSGoogle Scholar
  32. Schatten, K. H., Wilcox, J. M., and Ness, N. F.: 1969, Solar Phys. 6, 442.CrossRefADSGoogle Scholar
  33. Schrijver, C. J.: 2001, Astrophys. J. 547, 475.CrossRefADSGoogle Scholar
  34. Schrijver, C. J. and Title, A. M.: 2001, Astrophys. J. 551, 1099.CrossRefADSGoogle Scholar
  35. Schrijver, C. J., DeRosa, M. L., and Title, A. M.: 2002, Astrophys. J. 577, 1006.CrossRefADSGoogle Scholar
  36. Schrijver, C. J., Shine, R. A., Hagenaar, H. J., Hurlburt, N. E., Title, A. M., Strous, L. H., Jefferies, S. M., Jones, A. R., Harvey, J. W., and Duvall, T. L: 1996, Astrophys. J. 468, 921.CrossRefADSGoogle Scholar
  37. Schrijver, C. J., Title, A. M., Berger, T. E., Fletcher, L., Hurlburt, N. E., Nightingale, R., Shine, R. A., Tarbell, T. D., Wolfson, J., Golub, L., Bookbinder, J. A., DeLuca, E. E., McMullen, R. A., Warren, H. P., Kankelborg, C. C., Handy, B. N., and De Pontieu, B.: 1999, Solar Phys. 187, 261.CrossRefADSGoogle Scholar
  38. Schwenn, R., Inhester, B., Plunkett, S. P. et al.: 1997, Solar Phys. 175, 667.CrossRefADSGoogle Scholar
  39. Sheeley, N. R., Nash, A. G., and Wang, Y.-M.: 1987, Astrophys. J. 319, 481.CrossRefADSGoogle Scholar
  40. Sheeley, N. R., Wang, Y.-M., and Nash, A. G.: 1992, Astrophys. J. 401, 378.CrossRefADSGoogle Scholar
  41. Sheeley, N. R., Bohlin, J. D., Brueckner, G. E., Purcell, J. D., Scherrer, V. S., and Tousey, R.: 1975, Solar Phys. 40, 103.CrossRefADSGoogle Scholar
  42. Švestka, Z., Solodyna, C. V., Howard, R., and Levine, R. H.: 1977, Solar Phys. 55, 359.ADSGoogle Scholar
  43. Von Steiger, R., Geiss, J., and Gloeckler, G.: 1997, in J. R. Jokipii, C. P. Sonnett, and M. S. Giampapa (eds.), Cosmic Winds and the Heliosphere, University of Arizona Press, Tucson, Arizona, p. 581.Google Scholar
  44. Von Steiger, R., Schwadron, N., Fisk, L., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R., and Zurbuchen, T.: 2000, J. Geophys. Res. 105, 27217.CrossRefADSGoogle Scholar
  45. Waldmeier, H.: 1957, Die Sonnenkorona III, Birkhäuser Verlag, Basel.Google Scholar
  46. Wang, H., Yan, Y., Sakurai, T., and Zhang, M.: 2000, Solar Phys. 197, 263.CrossRefADSGoogle Scholar
  47. Wang, Y.-M. and Sheeley, N. R.: 1990a, Astrophys. J. 355, 726.ADSGoogle Scholar
  48. Wang, Y.-M. and Sheeley, N. R.: 1990b, Astrophys. J. 365, 372.CrossRefADSGoogle Scholar
  49. Wang, Y.-M. and Sheeley, N. R.: 1991, Astrophys. J. 375, 761.CrossRefADSGoogle Scholar
  50. Wang, Y.-M. and Sheeley, N. R.: 1992, Astrophys. J. 392, 310.ADSGoogle Scholar
  51. Wang, Y.-M. and Sheeley, N. R.: 1993, Astrophys. J. 414, 916.ADSGoogle Scholar
  52. Wang, Y.-M. and Sheeley, N. R.: 1994, Astrophys. J. 430, 399.CrossRefADSGoogle Scholar
  53. Wang, Y.-M. and Sheeley, N. R.: 1995, Astrophys. J. Lett. 447, 143.ADSGoogle Scholar
  54. Wang, Y.-M. and Sheeley, N. R.: 2002, J. Geophys. Res., in press.Google Scholar
  55. Wang, Y.-M., Lean, J., and Sheeley, N. R.: 2000, Geophys. Res. Lett. 27, 505.ADSGoogle Scholar
  56. Wang, Y.-M., Nash, A. G., and Sheeley, N. R.: 1989, Astrophys. J. 347, 529.CrossRefADSGoogle Scholar
  57. Wang, Y.-M., Sheeley, N. R., and Lean, J.: 2000, Geophys. Res. Lett. 27, 621.ADSGoogle Scholar
  58. Wilson, P. R., Altrock, R. C., Harvey, K. L., Martin, S. F., and Snodgrass, H. B.: 1988, Nature 333, 748.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Carolus J. Schrijver
    • 1
  • Marc L. DeRosa
    • 1
  1. 1.Dept. L9–41Lockheed Martin Advanced Technology CenterPalo AltoU.S.A

Personalised recommendations