Optical and Quantum Electronics

, Volume 35, Issue 4–5, pp 313–332 | Cite as

A finite element scheme to study the nonlinear optical response of a finite grating without and with defect

  • A. Suryanto
  • E. van Groesen
  • M. Hammer
  • H.J.W.M. Hoekstra
Article

Abstract

We present a simple numerical scheme based on the finite element method (FEM) using transparent-influx boundary conditions to study the nonlinear optical response of a finite one-dimensional grating with Kerr medium. Restricting first to the linear case, we improve the standard FEM to get a fourth order accurate scheme maintaining a symmetric-tridiagonal structure of the finite element matrix. For the full nonlinear equation, we implement the improved FEM for the linear part and a standard FEM for the nonlinear part. The resulting nonlinear system of equations is solved using a weighted-averaged fixed-point iterative method combined with a continuation method. To illustrate the method, we study a periodic structure without and with defect and show that the method has no problem with large nonlinear effect. The method is also found to be able to show the optical bistability behavior of the ideal and the defect structure as a function of either the frequency or the intensity of the input light. The bistability of the ideal periodic structure can be obtained by tuning the frequency to a value close to the bottom or top linear band-edge while that of the defect structure can be produced using a frequency near the defect mode or near the bottom of the linear band-edge. The threshold value can be reduced by increasing the number of layer periods. We found that the threshold needed for the defect structure is much lower then that for a strictly periodic structure of the same length.

finite element method optical bistability periodic (defect) structure transparent-influx boundary condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, G.S and S. Dutta Gupta. Opt. Lett. 12 829, 1987.Google Scholar
  2. Agranovich, V.M., S.A. Kiselev and D.L. Mills. Phys. Rev. B 44 10917, 1991.Google Scholar
  3. Atkinson, K.E. An Introduction to Numerical Analysis, 2nd edn., John Wiley & Sons, Inc., New York, 1989.Google Scholar
  4. Bayindir, M., C. Kural and E. Ozbay. J. Opt. A: Pure Appl. Opt. 3 S184, 2001.Google Scholar
  5. Bendickson, J.M., J.P. Dowling and M. Scalora. Phys. Rev. E 53 4107, 1996.Google Scholar
  6. Busch, K., C.T. Chan and C.M. Soukoulis. pp. 465-485. Photonic Band Gap Materials, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  7. Chen, W. and D.L. Mills. Phys. Rev. B 35 524, 1987a.Google Scholar
  8. Chen, W. and D.L. Mills. Phys. Rev. B 36 6269, 1987b.Google Scholar
  9. Danckaert, J., H. Thienpont, I. Veretennicoff, M. Haelterman and P. Mandel. Opt. Comm. 71 317, 1989.Google Scholar
  10. Danckaert, J., K. Fobelets and I. Veretennicoff. Phys. Rev. B 44 8214, 1991.Google Scholar
  11. Dutta Gupta, S. and G.S. Agarwal. J. Opt. Soc. Am. B 4 691, 1987.Google Scholar
  12. He, J. and M. Cada. Appl. Phys. Lett. 61 2150, 1992.Google Scholar
  13. He, G.S. and S.H. Liu. Physics of Nonlinear Optics, World Scientific, Singapore, 1999.Google Scholar
  14. Kasyap, R. Fiber Bragg Gratings, Academic Press, San Diego, 1999.Google Scholar
  15. Lidorikis, E., K. Busch, Q.M. Li, C.T. Chan and C.M. Soukoulis. Phys. Rev. B 56 15090, 1997.Google Scholar
  16. Lu, X., Y. Bai, S. Li and T. Chen. Opt. Comm. 156 219, 1998.Google Scholar
  17. Marburger, J.H. and F.S. Felber. Phys. Rev. A 17 335, 1978.Google Scholar
  18. Soukoulis, C.M. (ed.) Photonic Band Gaps and Localization, Plenum, New York, 1993.Google Scholar
  19. Soukoulis, C.M. (ed.) Photonic Band GapMaterials, Kluwer Academic Publishers, Dordrecht, 1996.Google Scholar
  20. Tran, P. Opt. Lett. 21 1138, 1996.Google Scholar
  21. Tran, P. J. Opt. Soc. Am. B 14 2589, 1997.Google Scholar
  22. Vasseur, J.O., B. Djafari-Rouhani, L. Dobrzynski, A. Akjouj and J. Zemmouri. Phys. Rev. B 59 13446, 1999.Google Scholar
  23. Wang, R., J. Dong and D.Y. Xing. Phys. Rev. E 55 6301, 1997.Google Scholar
  24. Winful, H.G., J.H. Marburger and E. Garmire. Appl. Phys. Lett. 35 379, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Suryanto
    • 1
    • 3
  • E. van Groesen
    • 1
  • M. Hammer
    • 1
  • H.J.W.M. Hoekstra
    • 1
  1. 1.MESA+ Research InstituteUniversity of TwenteThe Netherlands
  2. 2.Department of Applied MathematicsUniversity of TwenteAE EnschedeThe Netherlands
  3. 3.JI. MT HaryonoUniversitas BrawijayaMalangIndonesia

Personalised recommendations