Acta Mathematica Hungarica

, Volume 98, Issue 1–2, pp 21–30

On a Banach space approximable by Jacobi polynomials

  • S. P. Yadav


Let X represent either the space C[-1,1] Lp(α,β) (w), 1 ≦ p < ∞ on [-1, 1]. Then Xare Banach spaces under the sup or the p norms, respectively. We prove that there exists a normalized Banach subspace X1αβ of Xsuch that every f ∈ X1αβ can be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Our method to prove such an approximation problem is Fourier–Jacobi analysis based on the convergence of Fourier–Jacobi expansions.

Jacobi polynomial Banach spaces approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 23 (1972), 71-85.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    V. M. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR. Sbornik, 24 (1974), 223-255.CrossRefGoogle Scholar
  3. [3]
    H. Bavinck, A special class of Jacobi series and some applications, Mathematical Analysis and Applications, 37 (1972), 767-797.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Lasser and J. Obermaier, On the convergence of weighted Fourier expansions with respect to orthogonal polynomials, Acta Sci. Math. (Szeged), 60 (1995), 345-355.MathSciNetGoogle Scholar
  5. [5]
    Zh.-K. Li, Approximation of the Jacobi-Weyl class of functions by the partial sums of Jacobi expansions, in: Approximation Theory and Function Series (Budapest), Bolyai Society Mathematical Studies, 5 (1996), pp. 247-258.Google Scholar
  6. [6]
    A. Máté, P. Nevai and V. Totik, Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory, 46 (1986), 314-322.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    H. N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation, World Scientific (Singapore, 1996).Google Scholar
  8. [8]
    P. Nevai, Orthogonal Polynomials, Memoirs Amer. Math. Soc., 213 Amer. Mathematical Soc. (Providence, RI, 1979).Google Scholar
  9. [9]
    J. Newman and W. Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc., 3 (1952), 219-222.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Pollard, The mean convergence of orthogonal polynomial series I, Trans. Amer. Math. Soc., 62 (1947), 387-403.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Pollard, The mean convergence of orthogonal polynomial series II, Trans. Amer. Math. Soc., 63 (1948), 355-367.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    H. Pollard, The mean convergence of orthogonal polynomial series III, Duke Math. J., 16 (1949), 189-191.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Riesz, Sur les functions conjugées, Math. Z., 27 (1927), 218-244.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. G. Shi, Bounds and inequalities for general orthogonal polynomials on finite intervals, J. Approx. Theory, 73 (1993), 303-333.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Coll. Publ., Vol. XXIII 3rd ed. (New York, 1967).Google Scholar
  16. [16]
    Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials I, J. Approx. Theory, 72 (1993), 237-251.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials II, J. Approx. Theory, 76 (1994), 77-92.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. P. Yadav, On the saturation order of approximation processes involving Jacobi polynomials, J. Approx. Theory, 58 (1989), 36-49.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. P. Yadav, Saturation orders of some approximation processes in certain Banach spaces, Studia Sci Math. Hungar., 28 (1993), 1-18.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • S. P. Yadav
    • 1
  1. 1.Department of Mathematics and Computer ScienceModei Science College Rewa (M.P.)India

Personalised recommendations