Journal of Statistical Physics

, Volume 111, Issue 3–4, pp 505–533

Two Solutions to Diluted p-Spin Models and XORSAT Problems

  • M. Mézard
  • F. Ricci-Tersenghi
  • R. Zecchina
Article

Abstract

We derive analytical solutions for p-spin models with finite connectivity at zero temperature. These models are the statistical mechanics equivalent of p-XORSAT problems in theoretical computer science. We give a full characterization of the phase diagram: location of the phase transitions (static and dynamic), together with a description of the clustering phenomenon taking place in configurational space. We use two alternative methods: the cavity approach and a rigorous derivation.

Spin glass satisfiability leaf removal cavity method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Mézard and G. Parisi, Eur. Phys. J. B 20:217(2001).Google Scholar
  2. 2.
    O. C. Martin, R. Monasson, and R. Zecchina, Theoret. Comput. Sci. 265:3(2001).Google Scholar
  3. 3.
    S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Europhys. Lett. 55:465(2001).Google Scholar
  4. 4.
    T. J. Schaefer, in Proc. 10th STOC (San Diego, CA, USA, ACM, 1978), p. 216. N. Creignou, H. Daudé, and O. Dubois, preprint arXiv:cs.DM/0106001.Google Scholar
  5. 5.
    J. Hastad, J. ACM 48, 798(2001).Google Scholar
  6. 6.
    F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Phys. Rev. E 63:026702(2001).Google Scholar
  7. 7.
    A. Braunstein, M. Leone, F. Ricci-Tersenghi, and R. Zecchina, J. Phys. A 35:7559(2002), preprint arXiv: cond-mat/0203613, for the role of the dynamical transition on global algorithms.Google Scholar
  8. 8.
    M. Mézard, G. Parisi, and R. Zecchina, Science 297:812(2002).Google Scholar
  9. 9.
    M. Mézard and R. Zecchina, Phys. Rev. E 66:056126(2002), arXiv:cond-mat/0207194.Google Scholar
  10. 10.
    For a very recent review on mathematical results on spin glass models see A. Bovier and I. Kurkova, preprint arXiv:cond-mat/0206562, and references therein.Google Scholar
  11. 11.
    M. Leone, F. Ricci-Tersenghi, and R. Zecchina, J. Phys. A 34:4615(2001).Google Scholar
  12. 12.
    S. Franz, M. Leone, F. Ricci-Tersenghi, and R. Zecchina, Phys. Rev. Lett. 87:127209(2001).Google Scholar
  13. 13.
    M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).Google Scholar
  14. 14.
    M. Mézard and G. Parisi, J. Stat. Phys. 111:1(2003), arXiv:cond-mat/0207121.Google Scholar
  15. 15.
    V. F. Kolchin, Random Graphs (Cambridge University Press, 1999).Google Scholar
  16. 16.
    B. Pittel, J. Spencer, and N. Wormald, J. Comb. Theory B 67:111(1996).Google Scholar
  17. 17.
    M. Bauer and O. Golinelli, Eur. Phys. J. B 24:339(2001).Google Scholar
  18. 18.
    M. Weigt, Eur. Phys. J. B 28:369(2002), preprint arXiv:cond-mat/0203281.Google Scholar
  19. 19.
    S. Cocco, O. Dubois, J. Mandler, and R. Monasson, Phys. Rev. Lett. 90:047205(2003), preprint arXiv:cond-mat/0206239.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. Mézard
    • 1
  • F. Ricci-Tersenghi
    • 2
  • R. Zecchina
    • 3
  1. 1.Laboratoire de Physique Théorique et Modèles StatistiquesUniversité Paris SudOrsayFrance
  2. 2.Dipartimento di Fisica and INFMUniversità di Roma “La Sapienza,”Roma (Italy)
  3. 3.International Center for Theoretical PhysicsTriesteItaly

Personalised recommendations