Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 73, Issue 2, pp 177–187 | Cite as

Two pathways of plant regeneration in wheat anther culture

  • R. Konieczny
  • A.Z. Czaplicki
  • H. Golczyk
  • L. Przywara
Article

Abstract

The anthers of 10 Polish winter wheat (Triticum aestivum L.) cultivars were used for the induction of androgenesis and plant regeneration. The highest rate of callus induction (9.1%) and green plant production (0.8%) was obtained with the cultivar Apollo that was chosen for histological analysis. The first androgenic division was symmetrical and occurred after 3 weeks of culture. Further divisions of newly formed cells gave rise to multicellular structures which followed two developmental pathways: callus production or direct embryo formation. Plant regeneration was observed in both pathways. Chromosome counting of plantlets regenerated showed that haploid metaphases 2n=3x=21 were the most frequent.

Androgenesis Anther culture Gramineae Organogenesis Plant regeneration Triticum aestivum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed KZ & Sagi F (1993) Culture of and fertile plant regeneration from regenerable embryogenic suspension cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep. 12: 175-179Google Scholar
  2. Armstrong TA, Metz SG & Mascia PN (1987) Two regeneration systems form the production of haploid plants from wheat anther culture. Plant Sci. 31: 231-237Google Scholar
  3. Cho MS & Zapata FJ (1988) Callus formation and plant regeneration in isolated pollen culture of rice (Oryza sativa L. cv. Taipei 309). Plant Sci. 58: 239-244Google Scholar
  4. Cho MS & Zapata FJ (1990) Plant regeneration from isolated microspore of indiana rice. Plant Cell Physiol. 31: 881-885Google Scholar
  5. Cieślak E, Ilnicki T & Flis M (2000) Cytotaxonomical studies on the Caltha palustris complex (Ranunculaceae) in Poland. Preliminary report. Acta Biol. Cracov. Ser. Bot. 42: 121-219Google Scholar
  6. Czaplicki AZ (1993) Factors affecting androgenesis induction of winter and spring wheat. Biul. Inst. Hodowl. Aklimatyzacji Roślin 187: 37-44Google Scholar
  7. De Buyser J, Henry Y, Lonnet P, Hertzog R & Hespel A (1987) ‘Florin’: A doubled haploid wheat variety developed by the anther culture method. Plant Breed. 98: 53-56Google Scholar
  8. Eady C, Lindsey K & Twell D (1995) The significance of microspore divisions and divisions symmetry for vegetative-cell specific transcription and generative cell differentiation. Plant Cell 7: 65-74Google Scholar
  9. Fadel F & Wenzel G (1990) Medium-genotype interaction and androgenetic haploid production in wheat. Plant Breed. 105: 278-282Google Scholar
  10. Foroughi-Wehr B & Zeller FJ (1990) In vitro microspore reaction of different German wheat cultivars. Theor. Appl. Genet. 79: 77-80Google Scholar
  11. Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus culture. Phytomorphology 28: 74-81Google Scholar
  12. Hassawi DS, Sears RG & Liang GH (1990) Microspore development in the anther culture of wheat (Triticum aestivum L.). Cytologia (Tokyo) 55: 475-578Google Scholar
  13. Hause B, van Veenendaal WLH, Hause G & van Lammeren AAM (1994) Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas. Bot. Acta 107: 369-472Google Scholar
  14. He DG, Yang YM, Bertram J & Scott KJ (1990) The histological development of the regenerative tissue derived from cultured immature embryos of wheat (Triticum aestivum L.). Plant Sci. 68: 103-111Google Scholar
  15. Heberle-Bors E & Odenbach W (1985) In vitro pollen embryogenesis and cytoplasmic male sterility in Triticum aestivum. Z. Pflanzenzϋcht. 95: 14-22Google Scholar
  16. Henry Y & de Buyser J (1985) Effect of the 1B/1R translocation on anther culture ability in wheat (Triticum aestivum L.). Plant Cell Rep. 4: 307-310Google Scholar
  17. Holme IB, Olesen A, Hansen NJP & Andersen SB (1999) Anther and isolated microspore culture response of wheat lines from northwestern and eastern Europe. Plant Breed. 118: 111-117Google Scholar
  18. Hu D, Tang Y, Yuan Z & Wang J (1983) The induction of pollen sporophytes of winter wheat and the development of the new variety Jinghua No. 1. Sci. Agric. Sin. 1: 29-35Google Scholar
  19. Hu Y, Bao RR & Xue XY (1988) The new strain ‘764’ of spring wheat by pollen haploid technicque from anther culture. Genet. Manip. Crops Newslett. 4: 70-85Google Scholar
  20. Idzikowska K, Ponitka A & Mlodzianowski F (1982) Pollen dimorphism and androgenesis in Hordeum vulgare. Acta Soc. Bot. Polon. 51: 153-156Google Scholar
  21. Indrianto A, Barinova I, Touraev A & Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of the embryogenic microspores and body axis formation in the embryo. Planta 212: 163-174Google Scholar
  22. Joachimiak A, Kula A, Śliwińska E & Sobieszczańska A (2001) C-banding and nuclear DNA amount in six Bromus species. Acta Biol. Cracov. Ser. Bot. 43: 105-115Google Scholar
  23. Lazar MD, Baenziger PS & Schaeffer GW (1984) Combining abilities and heritability of callus formation and plantlet regeneration in wheat (Triticum aestivum L.) anther culture. Theor. Appl. Genet. 68: 131-134Google Scholar
  24. Lazar MD, Schaeffer GW & Beanziger PS (1990) The effects of interaction of culture environment with genotype on wheat (Triticum aestivum L.) anther culture response. Plant Cell Rep. 8: 525-529Google Scholar
  25. Magnusson I & Bornman CH (1985) Anatomical observations on somatic embryogenesis from scutellar tissues of immature zygotic embryos of Triticum aestivum. Physiol. Plant. 63: 137- 145Google Scholar
  26. Moieni A & Sarrafi A (1996) The effects of giberelic acid, phenylethylamine, 2,4-D, and genotype on androgenesis in hexaploid wheat (Triticum aestivum). Cer. Res. Com. 24: 139-144Google Scholar
  27. Moieni A, Lokos-Toth K & Sarrafi A (1997) Evidence for genetic control and media effect on haploid regeneration in the anther culture of hexaploid wheat (Triticum aestivum L.). Plant Breed. 116: 502-504Google Scholar
  28. Ouang TW, Hu H, Chuang CC & Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Scientia Sin. 16: 79-95Google Scholar
  29. Ozias-Akins P & Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110: 85-105Google Scholar
  30. Ozias-Akins P & Vasil IK (1983a) Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117: 40-44Google Scholar
  31. Ozias-Akins P & Vasil IK (1983b) Proliferation of and plant regeneration from the epiblast of Triticum aestivum (wheat; Gramineae) embryos. Am. J. Bot. 70: 1092-1097Google Scholar
  32. Pan J, Gao G & Ban H (1983) Initial patterns of androgenesis in wheat anther culture. Acta Bot. Sin. 25: 34-39Google Scholar
  33. Pauk J, Kertesz Z, Beke B, Bona L, Csosz M & Matuz J (1995) New winter wheat variety: ‘GK Delibab’ developed via combining conventional breeding and in vitro androgenesis. Cer. Res. Com. 23: 251-256Google Scholar
  34. Raghavan V (1978) Origin and development of pollen embryoids and calluses in cultured anther segments of Hyoscamus niger (henbane). Am. J. Bot. 65: 984-1002Google Scholar
  35. Raghavan V (1997) Molecular Embryology of Flowering Plants. Cambridge University Press, CambridgeGoogle Scholar
  36. Reynolds TL (1993) A cytological analysis of microspores of Triticum aestivum (Poaceae) during normal ontogeny and induced embryogenic development. Am. J. Bot. 80: 569-576Google Scholar
  37. Rybczyński JJ, Simonson RL & Baenziger PS (1991) Evidence for micropore embryogenesis in wheat anther culture. In Vitro Cell Dev. Biol. 27P: 168-174Google Scholar
  38. Sangwan RS & Sangwan-Norreel B (1987a) Ultrastructural cytology of plastids in pollen grains of certain androgenetic and non-androgenetic plants. Protoplasma 138: 11-22Google Scholar
  39. Sangwan RS & Sangwan-Norreel B (1987b) Biochemical cytology of pollen embryogenesis. Int. Rev. Cytol. 107: 221-272Google Scholar
  40. Stober A & Hess D (1997) Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed. 116: 443-447Google Scholar
  41. Szakács E & Barnabás B (1988) Cytological aspects of in vitro androgenesis in wheat (Triticum aestivum L.) using fluorescence microscopy. Sex. Plant Reprod. 1: 217-222Google Scholar
  42. Szakács E & Barnabás B (1995) The effect of colchicine treatment on microspore division and microspore-derived embryo differentiation in wheat (Triticum aestivum L.) anther culture. Euphytica 83: 209-213Google Scholar
  43. Touraev A, Lezin F & Heberle-Bors E (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex. Plant Reprod. 8: 70-76Google Scholar
  44. Touraev A, Indrianto A, Wratschko I, Vicente O & Heberle-Bors E (1996) Efficient micropsore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex. Plant Reprod. 9: 209-215Google Scholar
  45. Vergne P, Riccardi F, Beckert M & Dumas C (1993) Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theor. Appl. Genet. 83: 843-850Google Scholar
  46. Wang CC, Chu CC, Sun CS, Wu SHM, Yin KC & Hsu C (1973) The androgenesis in wheat (Triticum aestivum) anthers cultured in vitro. Scientia Sin. 16: 218-222Google Scholar
  47. Wang P & Chen YR (1983) Preliminary study on prediction of height of pollen H generation in winter wheat grown in field. Acta Agron. Sin. 9: 283-284Google Scholar
  48. Zaki MAM & Dickinson HG (1990) Structural changes during the first divisions of embryo resulting from anther and free microspore culture in Brassica napus. Protoplasma 156: 149-162Google Scholar
  49. Zhou JY (1980) Pollen dimorphism and its relation to the formation of pollen embryos in anther culture of wheat (Triticum aestivum). Acta Bot. Sin. 22: 117-121Google Scholar
  50. Zhuang JJ & Jia X (1983) Increasing differentiation frequencies in wheat pollen callus. In: Cell and Tissue Culture Techniques for Cereal Crop Improvement (pp. 431). Science Press, BeijingGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Konieczny
    • 1
  • A.Z. Czaplicki
    • 2
  • H. Golczyk
    • 1
  • L. Przywara
    • 1
  1. 1.Department of Plant Cytology and EmbryologyJagiellonian UniversityKrakówPoland
  2. 2.Plant Breeding and Acclimatization InstituteBloniePoland

Personalised recommendations