Plant Cell, Tissue and Organ Culture

, Volume 73, Issue 2, pp 177–187 | Cite as

Two pathways of plant regeneration in wheat anther culture

  • R. Konieczny
  • A.Z. Czaplicki
  • H. Golczyk
  • L. PrzywaraEmail author


The anthers of 10 Polish winter wheat (Triticum aestivum L.) cultivars were used for the induction of androgenesis and plant regeneration. The highest rate of callus induction (9.1%) and green plant production (0.8%) was obtained with the cultivar Apollo that was chosen for histological analysis. The first androgenic division was symmetrical and occurred after 3 weeks of culture. Further divisions of newly formed cells gave rise to multicellular structures which followed two developmental pathways: callus production or direct embryo formation. Plant regeneration was observed in both pathways. Chromosome counting of plantlets regenerated showed that haploid metaphases 2n=3x=21 were the most frequent.

Androgenesis Anther culture Gramineae Organogenesis Plant regeneration Triticum aestivum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed KZ & Sagi F (1993) Culture of and fertile plant regeneration from regenerable embryogenic suspension cell-derived protoplasts of wheat (Triticum aestivum L.). Plant Cell Rep. 12: 175-179Google Scholar
  2. Armstrong TA, Metz SG & Mascia PN (1987) Two regeneration systems form the production of haploid plants from wheat anther culture. Plant Sci. 31: 231-237Google Scholar
  3. Cho MS & Zapata FJ (1988) Callus formation and plant regeneration in isolated pollen culture of rice (Oryza sativa L. cv. Taipei 309). Plant Sci. 58: 239-244Google Scholar
  4. Cho MS & Zapata FJ (1990) Plant regeneration from isolated microspore of indiana rice. Plant Cell Physiol. 31: 881-885Google Scholar
  5. Cieślak E, Ilnicki T & Flis M (2000) Cytotaxonomical studies on the Caltha palustris complex (Ranunculaceae) in Poland. Preliminary report. Acta Biol. Cracov. Ser. Bot. 42: 121-219Google Scholar
  6. Czaplicki AZ (1993) Factors affecting androgenesis induction of winter and spring wheat. Biul. Inst. Hodowl. Aklimatyzacji Roślin 187: 37-44Google Scholar
  7. De Buyser J, Henry Y, Lonnet P, Hertzog R & Hespel A (1987) ‘Florin’: A doubled haploid wheat variety developed by the anther culture method. Plant Breed. 98: 53-56Google Scholar
  8. Eady C, Lindsey K & Twell D (1995) The significance of microspore divisions and divisions symmetry for vegetative-cell specific transcription and generative cell differentiation. Plant Cell 7: 65-74Google Scholar
  9. Fadel F & Wenzel G (1990) Medium-genotype interaction and androgenetic haploid production in wheat. Plant Breed. 105: 278-282Google Scholar
  10. Foroughi-Wehr B & Zeller FJ (1990) In vitro microspore reaction of different German wheat cultivars. Theor. Appl. Genet. 79: 77-80Google Scholar
  11. Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus culture. Phytomorphology 28: 74-81Google Scholar
  12. Hassawi DS, Sears RG & Liang GH (1990) Microspore development in the anther culture of wheat (Triticum aestivum L.). Cytologia (Tokyo) 55: 475-578Google Scholar
  13. Hause B, van Veenendaal WLH, Hause G & van Lammeren AAM (1994) Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas. Bot. Acta 107: 369-472Google Scholar
  14. He DG, Yang YM, Bertram J & Scott KJ (1990) The histological development of the regenerative tissue derived from cultured immature embryos of wheat (Triticum aestivum L.). Plant Sci. 68: 103-111Google Scholar
  15. Heberle-Bors E & Odenbach W (1985) In vitro pollen embryogenesis and cytoplasmic male sterility in Triticum aestivum. Z. Pflanzenzϋcht. 95: 14-22Google Scholar
  16. Henry Y & de Buyser J (1985) Effect of the 1B/1R translocation on anther culture ability in wheat (Triticum aestivum L.). Plant Cell Rep. 4: 307-310Google Scholar
  17. Holme IB, Olesen A, Hansen NJP & Andersen SB (1999) Anther and isolated microspore culture response of wheat lines from northwestern and eastern Europe. Plant Breed. 118: 111-117Google Scholar
  18. Hu D, Tang Y, Yuan Z & Wang J (1983) The induction of pollen sporophytes of winter wheat and the development of the new variety Jinghua No. 1. Sci. Agric. Sin. 1: 29-35Google Scholar
  19. Hu Y, Bao RR & Xue XY (1988) The new strain ‘764’ of spring wheat by pollen haploid technicque from anther culture. Genet. Manip. Crops Newslett. 4: 70-85Google Scholar
  20. Idzikowska K, Ponitka A & Mlodzianowski F (1982) Pollen dimorphism and androgenesis in Hordeum vulgare. Acta Soc. Bot. Polon. 51: 153-156Google Scholar
  21. Indrianto A, Barinova I, Touraev A & Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of the embryogenic microspores and body axis formation in the embryo. Planta 212: 163-174Google Scholar
  22. Joachimiak A, Kula A, Śliwińska E & Sobieszczańska A (2001) C-banding and nuclear DNA amount in six Bromus species. Acta Biol. Cracov. Ser. Bot. 43: 105-115Google Scholar
  23. Lazar MD, Baenziger PS & Schaeffer GW (1984) Combining abilities and heritability of callus formation and plantlet regeneration in wheat (Triticum aestivum L.) anther culture. Theor. Appl. Genet. 68: 131-134Google Scholar
  24. Lazar MD, Schaeffer GW & Beanziger PS (1990) The effects of interaction of culture environment with genotype on wheat (Triticum aestivum L.) anther culture response. Plant Cell Rep. 8: 525-529Google Scholar
  25. Magnusson I & Bornman CH (1985) Anatomical observations on somatic embryogenesis from scutellar tissues of immature zygotic embryos of Triticum aestivum. Physiol. Plant. 63: 137- 145Google Scholar
  26. Moieni A & Sarrafi A (1996) The effects of giberelic acid, phenylethylamine, 2,4-D, and genotype on androgenesis in hexaploid wheat (Triticum aestivum). Cer. Res. Com. 24: 139-144Google Scholar
  27. Moieni A, Lokos-Toth K & Sarrafi A (1997) Evidence for genetic control and media effect on haploid regeneration in the anther culture of hexaploid wheat (Triticum aestivum L.). Plant Breed. 116: 502-504Google Scholar
  28. Ouang TW, Hu H, Chuang CC & Tseng CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Scientia Sin. 16: 79-95Google Scholar
  29. Ozias-Akins P & Vasil IK (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): evidence for somatic embryogenesis. Protoplasma 110: 85-105Google Scholar
  30. Ozias-Akins P & Vasil IK (1983a) Improved efficiency and normalization of somatic embryogenesis in Triticum aestivum (wheat). Protoplasma 117: 40-44Google Scholar
  31. Ozias-Akins P & Vasil IK (1983b) Proliferation of and plant regeneration from the epiblast of Triticum aestivum (wheat; Gramineae) embryos. Am. J. Bot. 70: 1092-1097Google Scholar
  32. Pan J, Gao G & Ban H (1983) Initial patterns of androgenesis in wheat anther culture. Acta Bot. Sin. 25: 34-39Google Scholar
  33. Pauk J, Kertesz Z, Beke B, Bona L, Csosz M & Matuz J (1995) New winter wheat variety: ‘GK Delibab’ developed via combining conventional breeding and in vitro androgenesis. Cer. Res. Com. 23: 251-256Google Scholar
  34. Raghavan V (1978) Origin and development of pollen embryoids and calluses in cultured anther segments of Hyoscamus niger (henbane). Am. J. Bot. 65: 984-1002Google Scholar
  35. Raghavan V (1997) Molecular Embryology of Flowering Plants. Cambridge University Press, CambridgeGoogle Scholar
  36. Reynolds TL (1993) A cytological analysis of microspores of Triticum aestivum (Poaceae) during normal ontogeny and induced embryogenic development. Am. J. Bot. 80: 569-576Google Scholar
  37. Rybczyński JJ, Simonson RL & Baenziger PS (1991) Evidence for micropore embryogenesis in wheat anther culture. In Vitro Cell Dev. Biol. 27P: 168-174Google Scholar
  38. Sangwan RS & Sangwan-Norreel B (1987a) Ultrastructural cytology of plastids in pollen grains of certain androgenetic and non-androgenetic plants. Protoplasma 138: 11-22Google Scholar
  39. Sangwan RS & Sangwan-Norreel B (1987b) Biochemical cytology of pollen embryogenesis. Int. Rev. Cytol. 107: 221-272Google Scholar
  40. Stober A & Hess D (1997) Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed. 116: 443-447Google Scholar
  41. Szakács E & Barnabás B (1988) Cytological aspects of in vitro androgenesis in wheat (Triticum aestivum L.) using fluorescence microscopy. Sex. Plant Reprod. 1: 217-222Google Scholar
  42. Szakács E & Barnabás B (1995) The effect of colchicine treatment on microspore division and microspore-derived embryo differentiation in wheat (Triticum aestivum L.) anther culture. Euphytica 83: 209-213Google Scholar
  43. Touraev A, Lezin F & Heberle-Bors E (1995) Maintenance of gametophytic development after symmetrical division in tobacco microspore culture. Sex. Plant Reprod. 8: 70-76Google Scholar
  44. Touraev A, Indrianto A, Wratschko I, Vicente O & Heberle-Bors E (1996) Efficient micropsore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex. Plant Reprod. 9: 209-215Google Scholar
  45. Vergne P, Riccardi F, Beckert M & Dumas C (1993) Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theor. Appl. Genet. 83: 843-850Google Scholar
  46. Wang CC, Chu CC, Sun CS, Wu SHM, Yin KC & Hsu C (1973) The androgenesis in wheat (Triticum aestivum) anthers cultured in vitro. Scientia Sin. 16: 218-222Google Scholar
  47. Wang P & Chen YR (1983) Preliminary study on prediction of height of pollen H generation in winter wheat grown in field. Acta Agron. Sin. 9: 283-284Google Scholar
  48. Zaki MAM & Dickinson HG (1990) Structural changes during the first divisions of embryo resulting from anther and free microspore culture in Brassica napus. Protoplasma 156: 149-162Google Scholar
  49. Zhou JY (1980) Pollen dimorphism and its relation to the formation of pollen embryos in anther culture of wheat (Triticum aestivum). Acta Bot. Sin. 22: 117-121Google Scholar
  50. Zhuang JJ & Jia X (1983) Increasing differentiation frequencies in wheat pollen callus. In: Cell and Tissue Culture Techniques for Cereal Crop Improvement (pp. 431). Science Press, BeijingGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Konieczny
    • 1
  • A.Z. Czaplicki
    • 2
  • H. Golczyk
    • 1
  • L. Przywara
    • 1
    Email author
  1. 1.Department of Plant Cytology and EmbryologyJagiellonian UniversityKrakówPoland
  2. 2.Plant Breeding and Acclimatization InstituteBloniePoland

Personalised recommendations