Journal of Chemical Ecology

, Volume 29, Issue 3, pp 703–730

Linking Chemical Reactivity and Protein Precipitation to Structural Characteristics of Foliar Tannins

  • T. E. C. Kraus
  • Z. Yu
  • C. M. Preston
  • R. A. Dahlgren
  • R. J. Zasoski
Article

Abstract

Tannins influence ecosystem function by affecting decomposition rates, nutrient cycling, and herbivory. To determine the role of tannins in ecological processes, it is important to quantify their abundance and understand how structural properties affect reactivity. In this study, purified tannins from the foliage of nine species growing in the pygmy forest of the northern California coast were examined for chemical reactivity, protein precipitation capacity (PPC), and structural characteristics (13C NMR). Reactivity of purified tannins varied among species 1.5-fold for the Folin total phenol assay, and 7-fold and 3-fold, respectively, for the acid butanol and vanillin condensed tannin assays. There was about a 5-fold difference in PPC. Variation in chemical reactivity and PPC can be largely explained by differences in structural characteristics of the tannins determined by 13C NMR. In particular, the condensed versus hydrolyzable tannin content, as well as the hydroxylation pattern of the B-ring and stereochemistry at the C-2–C-3 position appear to influence reactivity. Due to the large differences in chemical reactivity among species, it is necessary to use a well-characterized purified tannin from the species of interest to convert assay values to concentrations. Our results suggest that structural characteristics of tannins play an important role in regulating their reactivity in ecological processes.

Tannins polyphenols 13C NMR chemical structure phenolics Folin-Ciocalteu acid butanol vanillin astringency nutrient cycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R. J., Barry, T. N., and McNabb, W. C. 1999. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ 75:1–12.Google Scholar
  2. Appel, H. M., Govenor, H. L., D'ascenzo, M., Siska, E., and Schultz, J. C. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. J. Chem. Ecol. 27:761–778.Google Scholar
  3. Ayres, M. P., Clausen, T. P., MacLean, S. F., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.Google Scholar
  4. Bate-Smith, E. C. 1977. Astringent tannins of Acer species. Phytochemistry 16:1421–1426.Google Scholar
  5. Bernays, E. A., Driver, G. C., and Bilgener, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.Google Scholar
  6. Bradley, R. L., Titus, B. D., and Preston, C. P. 2000. Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2 SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol. Biochem. 32:1227–1240.Google Scholar
  7. Clausen, T. P., Provenza, F. D., Burritt, E. A., Reichard, P. B., and Bryant, J. P. 1990. Ecological implications of condensed tannin structure: a case study. J. Chem. Ecol. 16:2381–2392.Google Scholar
  8. Czochanska, Z., Foo, L. Y., Newman, R. H., and Porter, L. J. 1980. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. I. 1980:2278–2286.Google Scholar
  9. Dawra, R. K., Makkar, H. P. S., and Singh, B. 1988. Protein-binding capacity of microquantities of tannins. Anal. Biochem. 170:50–53.Google Scholar
  10. De Bruyne, T., Pieters, L. A. C., Dommisse, R. A., Kolodziej, H., Wray, V., Domke, T., and Vlietinck, A. J. 1996. Unambiguous assignments for free dimeric proanthocyanidin phenols from 2D NMR. Phytochemistry 43:265–272.Google Scholar
  11. Ellis, C. J., Foo, L. Y., and Porter, L. J. 1983. Enatiomerism: a characteristic of the proanthocyanidin chemistry of the Monocotoledonae. Phytochemistry 22:483–487.Google Scholar
  12. Foo, L. Y. and Porter, L. J. 1980. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19:1747–1754.Google Scholar
  13. Foo, L. Y., Newman, R., Waghorn, G., McNabb, W. C., and Ulyatt, M. J. 1996. Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624.Google Scholar
  14. Foo, L. Y., Lu, Y., McNabb, W. C., Waghorn, G., and Ulyatt, M. J. 1997. Proanthocyanidins from Lotus pedunculatus. Phytochemistry 45:1689–1696.Google Scholar
  15. Foo, L. Y., Lu, Y., Molan, A. L., Woodfield, D. R., and McNabb, W. C. 2000. The phenols and prodelphinidins of white clover flowers. Phytochemistry 54:539–548.Google Scholar
  16. Fukumoto, L. R. and Mazza, G. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48:3597–3604.Google Scholar
  17. Ginger-Chaves, B. I., Van Soest, P. J., Robertson, J. B., Lascano, C., and Pell, A. N. 1997. Comparison of the precipitation of alfalfa leaf protein and bovine serum albumin by tannins in the radial diffusion method. J. Sci. Food Agric. 74:513–523.Google Scholar
  18. Hagerman, A. E. 1987. Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 13:437–449.Google Scholar
  19. Hagerman, A. E. and Butler, L. G. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26:809–812.Google Scholar
  20. Hagerman, A. E. and Butler, L. G. 1981. The specificity of proanthocyanidin–protein interactions. J. Biol. Chem. 256:4494–4497.Google Scholar
  21. Hagerman, A. E. and Butler, L. G. 1989. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 15:1795–1810.Google Scholar
  22. Hagerman, A. E., Rice, M. E., and Ritchard, N. T. 1998. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8) catechin (procyanidin). J. Agric. Food Chem. 46:2590–2595.Google Scholar
  23. Handley, W. R. C. 1961. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth. Plant Soil 15:37–73.Google Scholar
  24. Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense—a reappraisal. J. Chem. Ecol. 14:1789–1806.Google Scholar
  25. Hatano, T. and Hemingway, R. W. 1997. Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water. J. Chem. Soc. Perkin Trans. 2 1997:1035–1043.Google Scholar
  26. Hättenschwiler, S., and Vitousek, P. M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Tree 15:238–243.Google Scholar
  27. Hedqvist, H., Mueller-Harvey, I., Reed, J. D., Krueger, C. G., and Murphy, M. 2000. Characterisation of tannins and in vitro protein digestibility of several Lotus corniculatus varieties. Anim. Feed Sci. Technol. 87:41–56.Google Scholar
  28. Hemingway, R. W. 1989. Structural variations in proanthocyanidins and their derivatives, pp. 83–107, in R. W. Hemingway and J. J. Karchesy (Eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.Google Scholar
  29. Hemingway, R. W. and McGraw, G. W. 1983. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 3:421–435.Google Scholar
  30. Jones, R. J., Meyer, J. H. F., Bechaz, M., and Stoltz, M. A. 2000. An approach to screening potential pasture species for condensed tannin activity. Anim. Feed Sci. Technol. 85:269–277.Google Scholar
  31. Kawamoto, H., Nakatsubo, R., and Murakami, K. 1990. Relationship between the B-ring hydroxylation pattern of condensed tannins and their protein-precipitating capacity. J. Wood Chem. Technol. 10:401–409.Google Scholar
  32. Lorenz, K. and Preston, C. M. 2002. Characterization of high-tannin fractions from humus by 13C CPMAS NMR. J. Environ. Qual. 31:431–436.Google Scholar
  33. Lorenz, K., Preston, C. M., Raspe, S., Morrison, I. K., and Feger, K. H. 2000. Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol. Biochem. 32:779–792.Google Scholar
  34. Makkar, H. P. S., Blümmel, M., Borowy, N. K., and Becker, K. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61:161–165.Google Scholar
  35. Martin, J. S. and Martin, M. M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211.Google Scholar
  36. Mole, S. and Waterman, P. G. 1987a. A critical analysis of techniques for measuring tannins in ecological studies I. Techniques for chemically defining tannins. Oecologia 72:137–147.Google Scholar
  37. Mole, S. and Waterman, P. G. 1987b. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia 72:148–156.Google Scholar
  38. Mole, S., Butler, L. G., Hagerman, A. E., and Waterman, P. G. 1989. Ecological tannin assays: A critique. Oecologia 78:93–96.Google Scholar
  39. Morton, J. F. 1978. Economic botany in epidemiology. Econ Bot. 32:111–116.Google Scholar
  40. Morton, J. F. 1992. Widespread tannin intake via stimulants and masticatoires, especially guarana, kola nut, betel vine, and accessories, pp. 739–765, in R. W. Hemingway and P. E. Laks (Eds.). Plant Polyphenols. Plenum Press, New York.Google Scholar
  41. Nelson, K. E., Pell, A. N., Doane, P. H., Ginger-Chavez, B. I., and Schofield, P. 1997. Chemical and biological assays to evaluate bacterial inhibition by tannins. J. Chem. Ecol. 23:1175–1194.Google Scholar
  42. Newman, R. H., Porter, L. J., Foo, L. Y., Johns, S. R., and Willing, R. I. 1987. High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magn. Reson. Chem. 25:118–124.Google Scholar
  43. Noferi, M., Masson, E., Merlin, A., Pizzi, A., and Deglise, X. 1997. Antioxidant characteristics of hydrolysable and polyflavonoid tannins: an ESR kinetics study. J. Appl. Polymer Sci. 63:475–482.Google Scholar
  44. Northup, R. R., Dahlgren, R. A., and Yu, Z. 1995. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171:255–262.Google Scholar
  45. Northup, R. R., Dahlgren, R. A., and McColl, J. G. 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: a positive feedback? Biogeochemistry 42:189–220.Google Scholar
  46. Porter, L. J. 1989. Tannins, pp. 389–419, in J.B. Harborne (ed.). Methods in Plant Biochemistry, Vol 1. Plant Phenolics. Academic Press, San Diego, CA.Google Scholar
  47. Porter, L. J. and Woodruffe, J. 1984. Haemanalysis: The relative astringency of proanthocyanidin polymers. Phytochemistry 23:1255–1256.Google Scholar
  48. Porter, L. J., Hrstich, L. N., and Chan, B. G. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.Google Scholar
  49. Preston, C. M. 1999. Condensed tannins of salal (Gaultheria shallon Pursh): A contributing factor to seedling “growth-check” on northern Vancouver Island?, pp. 825–841, in G.G. Gross, R.W. Hemingway and T. Yoshida (Eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  50. Preston, C. M., Trofymow, J. A., Sayer, B. G., and Niu, J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can. J. Bot. 75:1601–1613.Google Scholar
  51. Price, M. L., van Scoyoc, S., and Butler, L. G. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26:1214–1218.Google Scholar
  52. Robichaud, J. L. and Noble, A. C. 1990. Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 53:343–353.Google Scholar
  53. Roux, D. G., Ferreira, D., and Botha, J. J. 1980. Structural considerations in predicting the utilization of tannins. J. Agric. Food Chem. 28:216–222.Google Scholar
  54. Saint-Cricq de Gaulejac, N., Provost, C., and Vivas, N. 1999a. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem. 47:425–431.Google Scholar
  55. Saint-Cricq de Gaulejac, N., Vivas, N., de Freitas, V., and Bourgeois, G. 1999b. The influence of various phenolic compounds on scavenging activity assessed by an enzymatic method. J. Sci. Food Agric. 79:1081–1090.Google Scholar
  56. Santos-Buelga, C. and Scalbert, A. 2000. Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 80:1094–1117.Google Scholar
  57. Sarkar, S. K. and Howarth, R. E. 1976. Specificity of the vanillin test for flavanols. J. Agric. Food Chem. 24:317–320.Google Scholar
  58. Scalbert, A. 1992. Quantitative methods for the estimation of tannins in plant tissues, pp. 259–280, in R. W. Hemingway and P. E. Laks (Eds.). Plant Polyphenols: Synthesis, Properties, Significance. Plenum Press, New York.Google Scholar
  59. Scalbert, A., Monties, B., and Janin, G. 1989. Tannins in wood: comparison of different estimation methods. J. Agric. Food Chem. 37:1324–1329.Google Scholar
  60. Schimel, J. P., van Cleve, K., Cates, R. G., Clausen, T. P., and Reichardt, P. B. 1996. Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can. J. Bot. 74:84–90.Google Scholar
  61. Schimel, J. P., Cates, R. G., and Ruess, R. 1998. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234.Google Scholar
  62. Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144–158.Google Scholar
  63. Stewart, J. L., Mould, F., and Mueller-Harvey, I. 2000. The effect of drying treatment on the fodder quality and tannin content of two provenances of Calliandra calothyrus Meissner. J. Sci. Food Agric. 80:1461–1468.Google Scholar
  64. Swain, T. and Goldstein, J. L. 1963. The quantitative analysis of phenolic compounds, pp. 131–146, in J. B. Pridham (Eds.). Methods in Polyphenol Chemistry. Pergamon Press, Oxford.Google Scholar
  65. Swain, T. and Hillis, W. E. 1959. The phenolic constituents of Prunus domestica. 1. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63–68.Google Scholar
  66. Wang, H., Cao, G., and Prior, R. L. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304–309.Google Scholar
  67. Wisdom, C. S., Gonzalez-Coloma, A., and Rundel, P. W. 1987. Ecological tannin assays: Evaluation of proanthocyanidins, protein binding assays and protein precipitation potential. Oecologia 72:395–401.Google Scholar
  68. Yu, Z. and Dahlgren, R. A. 2000. Evaluation of methods for measuring polyphenols in conifer foliage. J. Chem. Ecol. 26:2119–2140.Google Scholar
  69. Zucker, W. V. 1983. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121:335–365.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • T. E. C. Kraus
    • 1
  • Z. Yu
    • 1
  • C. M. Preston
    • 2
  • R. A. Dahlgren
    • 1
  • R. J. Zasoski
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  2. 2.Pacific Forestry Centre, Natural Resources CanadaVictoriaCanada

Personalised recommendations