Biologia Plantarum

, Volume 46, Issue 2, pp 289–294 | Cite as

Heavy Metals Induce Lipid Peroxidation and Affect Antioxidants in Wheat Leaves

  • S.K. Panda
  • I. Chaudhury
  • M.H. Khan


The possible role of Zn and Cr as catalytic inducers of free radicals in wheat leaves was investigated. Treatment of excess heavy metals decreased the chlorophyll and carotenoid content in wheat leaves with the increase in time of excision. A sharp increase in proline accumulation was marked with the increase in metal concentration. Total peroxide content and lipid peroxidation measured as malondialdehyde content showed uniform increase under metal treatment in excised leaves. At almost all concentrations, catalase, guaiacol peroxidase and superoxide dismutase activities decreased with a minor increase in the earlier days of excision. Though glutathione content decreased ascorbate content showed significant increase in wheat leaves under heavy metal treatment.

catalase chromium guaiacol peroxidase superoxide dismutase Triticum aestivum zinc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alia, Prasad, K.V.S.K., Pardha Saradhi, P.: Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan.-Phytochemistry 39: 45–47, 1995.CrossRefGoogle Scholar
  2. Asada, K., Takahashi, M.: Production and scavenging of active oxygen in photosynthesis.-In: Kyle, D.J., Osmond, C.J., Artzen, C.J. (ed.): Photoinhibition: Topics in Photosynthesis. Pp. 227–287. Elsevier, Amsterdam 1987.Google Scholar
  3. Aust, S.D., Morehouse, L.A., Thomas, C.E.: Role of metals in oxygen radical reactions.-J. free Radical Biol. Med. 1: 3–25, 1985.CrossRefGoogle Scholar
  4. Barcelo, J., Poschenrieder, C.: Plant water relations as affected by heavy metal stress: a review.-J. Plant Nutr. 13: 1–37, 1990.CrossRefGoogle Scholar
  5. Barcelo, J., Poschenrieder, C.: Chromium in plants.-In: Carati, S., Tottarelli, F., Seqmi, P. (ed.): Chromium Environmental Issues. Pp. 101–129. Francotangati Press, Milan 1997.Google Scholar
  6. Barcelo, J., Poschenrieder, C., Vazquez, M.D., Gunse, B.: Aluminium phytotoxicity. A challange for plant scientists.-Fertil. Res. 43: 217–223, 1996.CrossRefGoogle Scholar
  7. Bates, L.S., Waldren, R.P., Teare, L.D.: Rapid determination free proline for water stress studies.-Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  8. Bhattacharjee, S., Mukherjee, A.K.: Influence of cadmium and lead on physiological and biochemical responses of Vigna unguiculata (L.) Walp. seedlings. I. Germination behaviour, total protein and proline content and protease activity.-Poll. Res. 13: 269–277, 1994.Google Scholar
  9. Cakmak, I.: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.-New Phytol. 146: 185–205, 2000.CrossRefGoogle Scholar
  10. Cakmak, I., Marschner, H.: Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves.-In: Barrow, N.J. (ed.): Plant Nutrition-From Genetic Engineering to Field Practice. Pp. 133–137. Kluwer Academic Publishers, Dordrecht 1993.Google Scholar
  11. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases.-Methods Enzymol. 2: 764–775, 1955.Google Scholar
  12. Chaney, R.L.: Zinc phytotoxicity.-In: Robson, A.D. (ed.): Zinc in Soil and Plants. Pp. 135–150. Kluwer Academic Publishers, Dordrecht 1993.Google Scholar
  13. Chaoui, A., Mazhoudi, S., Ghorbal, M.H., Ferjani, E.E.L: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.).-Plant Sci. 127: 139–147, 1997.CrossRefGoogle Scholar
  14. Dietz, K.J., Baier, M., Kramer, U.: Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants.-In: Prasad, M.N.V., Hagemeyer, J. (ed.): Heavy Metal Stress in Plants. From Molecules to Ecosystems. Pp. 73–79. Springer-Verlag, Berlin 1999.Google Scholar
  15. Elstner, E.F.: Oxygen activation and oxygen toxicity.-Annu. Rev. Plant Physiol. 33:78–96, 1982.CrossRefGoogle Scholar
  16. Fargašová, A.: Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapsis alba L. seedlings and their accumulation in roots and shoots.-Biol. Plant. 44: 471–473, 2001.CrossRefGoogle Scholar
  17. Gallego, S.M., Benavioes, M.P., Tomaro, M.L.: Effect of heavy metal ion excess on sunflower leaves-evidence for involvement of oxidative stress.-Plant Sci. 121: 151–159, 1996.CrossRefGoogle Scholar
  18. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase. I. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.PubMedGoogle Scholar
  19. Grant, J.J., Loake, G.J.: Role of reactive oxygen intermediate and cognate redox signalling in disease resistance.-Plant Physiol. 124: 21–29, 2000.PubMedCrossRefGoogle Scholar
  20. Griffith, O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2–vinylpyridine.-Anal. Biochem. 10: 207–211, 1980.CrossRefGoogle Scholar
  21. Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine.-Clarendon Press, Oxford 1988.Google Scholar
  22. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.PubMedCrossRefGoogle Scholar
  23. Hendry, G.A.F.: Oxygen, free radical process and seed longevity.-Seed Sci. Res. 3: 141–153, 1993.Google Scholar
  24. Luna, C.M., Gonzalez, C.A., Trippi, V.S.: Oxidative damage caused by an excess of copper in oat leaves.-Plant Cell Physiol. 35: 11–15, 1994.Google Scholar
  25. Mazhoudi, S., Chaoui, A., Ghorsab, M.W., Ferjani, E.E.: Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill.).-Plant Sci. 127: 129–137, 1997.CrossRefGoogle Scholar
  26. Oser, B.L.: Hawks Physiological Chemistry.-McGraw-Hill, New York 1979.Google Scholar
  27. Panda, S.K., Patra, H.K.: Physiology of chromium toxicity. A review.-Plant Physiol. Biochem. 24: 10–17, 1997.Google Scholar
  28. Panda, S.K., Patra, H.K.: Alteration of nitrate reductase activity by chromium ions in excised wheat leaves.-Indian J. agr. Biochem. 11(2): 56–57, 1998.Google Scholar
  29. Panda, S.K., Patra, H.K.: Does chromium (III) produce oxidative damage in excised wheat leaves ?-J. Plant Biol. 27: 105–110, 2000.Google Scholar
  30. Pardha Saradhi, P., Alia, Arora, S., Prasad, K.V.S.K.: Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation.-Biochem. biophys. Res. Commun. 209: 1–5, 1995.CrossRefGoogle Scholar
  31. Poschenrieder, C., Vazquez, M.D., Bonet, A., Barcelo, J.: Chromium III iron interaction in iron suffcient and iron-deficient bean plants. II Ultrastructural aspects.-J. Plant Nutr. 14: 415–428, 1991.Google Scholar
  32. Prasad, K.V.S.K., Pardhasaradhi, P., Sharmila, P.: Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea.-Environ. exp. Bot. 42: 1–10, 1999.CrossRefGoogle Scholar
  33. Rennenberg, H.: Glutathione metabolism and possible roles in higher plants.-Phytochemistry 21: 2771–2781, 1982.CrossRefGoogle Scholar
  34. Sagisaka, S.: The occurrence of peroxide in a perennial plant Populus gelrica.-Plant Physiol. 57: 308–309, 1976.PubMedGoogle Scholar
  35. Salin, M.L.: Toxic oxygen species and protective systems of chloroplast.-Physiol. Plant. 72: 681–728, 1988.Google Scholar
  36. Scandalios, J.G.: Oxygen stress and superoxide dismutase.-Plant Physiol. 101: 7–12, 1993.PubMedGoogle Scholar
  37. Schat, H., Sharma, S.S., Vooijs, R.: Heavy metal induced accumulation of free proline in a metal tolerant and a non tolerant ecotype of Silene vulgaris.-Physiol. Plant. 101: 477–482, 1997.CrossRefGoogle Scholar
  38. Shah, K., Kumar, R.G., Verma, S., Dubey, R.S.: Effect of cadmium on lipid peroxidation, superoxide anion, germination and activities of antioxidant enzymes in rice seedlings.-Plant Sci. 161: 1135–1144, 2001.CrossRefGoogle Scholar
  39. Somashekaraiah, B.V., Padmaja, K., Prasad, A.R.K.: Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation.-Physiol. Plant. 85: 85–89, 1992.CrossRefGoogle Scholar
  40. Takkar, P.N., Walker, C.D.: The distribution and correction of zinc deficiency.-In: Robson, A.D. (ed.): Zinc in Soils and Plants. Pp. 151–166. Kluwer Academic Publishers, Dordrecht 1993.Google Scholar
  41. Weckx, J.E.J., Clijsters, H.M.M.: Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris.-Plant Physiol. Biochem. 35: 405–410, 1997.Google Scholar
  42. Welch, R.M., Allaway, W.H., House, W.A., Kubota, J.: Geographic distribution of trace element problems.-In: Mortdvedt, J.J., Cox, F.R., Shumen, L.M., Welch, R.M. (ed.): Micronutrients in Agriculture. Pp. 31–57. Soil Science Society of America, Madison 1991.Google Scholar
  43. White, J.G., Zasoski, R.H.: Mapping soil micronutrients.-Field Crops Res. 60: 11–26, 1999.CrossRefGoogle Scholar
  44. Zeid, LM.: Responses of Phaseolus vulgaris to chromium and cobalt treatments.-Biol. Plant. 44: 111–115, 2001.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S.K. Panda
    • 1
  • I. Chaudhury
    • 1
  • M.H. Khan
    • 1
  1. 1.Plant Biochemistry Laboratory, School of Life SciencesAssam (Central) UniversitySilchar-India

Personalised recommendations