Molecular Breeding

, Volume 11, Issue 3, pp 169–185 | Cite as

A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers

  • Albert Kriegner
  • Jim Carlos Cervantes
  • Kornel Burg
  • Robert O.M. Mwanga
  • Dapeng Zhang


Amplified Fragment Length Polymorphism (AFLP) based genetic linkage maps were developed for hexaploid sweetpotato (Ipomoea batatas (L.) Lam., 2n = 6x = 90) using a segregating population derived from a biparental cross between the cultivars 'Tanzania' and 'Bikilamaliya'. A total of 632 ('Tanzania') and 435 ('Bikilamaliya') AFLPs could be ordered in 90 and 80 linkage groups, respectively. Total map lengths were 3655.6 cM and 3011.5 cM, respectively, with an average distance of 5.8 cM between adjacent markers. The genetic linkage analysis was performed in two steps. First a framework map was elaborated from the single dose markers. Interspersed duplex and double-simplex markers were used to detect homologous groups within and corresponding linkage groups among the parental maps. The type of polyploidy (autopolyploidy vs. allopolyploidy) was examined using the ratio of linkage in coupling phase to linkage in repulsion phase and the ratio of non-simplex to simplex markers. Our data support the predominance of polysomic inheritance with some degree of preferential pairing.

Autopolyploidy Hexaploid Polyploidy Polysomic inheritance Repulsion linkage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Janabi S.M., Honeycutt R.J., McClelland M. and Sobral B.W.S. 1993. A genetic linkage map of Saccharum spontaneum (L.) 'SES 208'. Genetics 134: 1249–1260.Google Scholar
  2. Al-Janabi S.M., Honeycutt R.J. and Sobral B.W.S. 1994. Chromosome assortment in Saccharum. Theor. Appl. Genet. 89: 959–963.Google Scholar
  3. Alonso-Blanco C., Peeters A.J.M., Koorneef M., Lister C., Dean C., van den Bosh N. et al. 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 14: 259–271.Google Scholar
  4. Austin D.F. 1988. The taxonomy, evolution and genetic diversity of sweet potato and related wild species. In: Gregory P. (ed.), Exploration Maintenance and Utilization of Sweetpotato Genetic Resources. International Potato Center (CIP), Lima, Peru, pp. 27–59.Google Scholar
  5. Barreneche T., Bodenes C., Lexer C., Trontin J.F., Fluch S., Streiff R. et al. 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isoenzyme and 5S rDNA markers. Theor. Appl. Genet. 97: 1090–1103.Google Scholar
  6. Bennetzen J.L. and Freeling M. 1993. Grasses as a single genetic system: genome composition, co-linearity and compatibility. Trends Genet. 9: 259–261.Google Scholar
  7. Bishop D.T., Cannings C., Skolnick M. and Williamson J.A. 1983. The number of polymorphic clones required to map the human genome. In: Weir B.S. (ed.), Statistical analysis of DNA sequence data. Marcel Dekker, New York, pp. 181–200.Google Scholar
  8. Brummer F.C., Fecht C.S., Mc Coy I.J., Kidwell K.K., Osborn T.C., Kiss G.B. et al. 1993. Molecular maps of alfalfa. In: Vasil I. and Philips R. (eds), DNA-based markers in plants. Kluwer Acadenic Press, New York.Google Scholar
  9. Da Silva J.A.G., Honeycutt R.J., Burnquist W., Al-Janabi S.M., Sorrells M.E., Tanksley S.D. et al. 1995. Saccharum spontaneum L. SES 208 genetic linkage map combining RFLP - and PCR-based markers. Mol. Breed. 1: 165–179.Google Scholar
  10. Dowling T.E., Moritz C., Paimer J.D. and Rieseberg L.H. 1996. Nucleic acids III: analysis of fragments and restriction sites. In: Hills D.M., Moritz C. and Mable B.K. (eds), Molecular Systematics. Sinauer Assoc. Publ., Sunderland, Mass, USA, pp. 249–320.Google Scholar
  11. Gebhardt C., Ritter E. and Salamini F. 1994. RFLP map of the potato. In: Phillips R.L. and Vastil I.K. (eds), DNA-based markers in plants. Kluwer, Dordrecht/Boston, pp. 271–285.Google Scholar
  12. Grattapaglia D. and Sederoff R. 1994. Genetic Linkage maps of Eucalyptus grandis and Eucalyptus urophylla using pseudotestcross mapping strategy and RAPD markers. Genetics 137: 1121–1137.Google Scholar
  13. International Potato Center (CIP) 1998. Sweetpotato Facts. International Potato Center, Lima, Peru.Google Scholar
  14. Jones A. 1965. Cytological observations and fertility measurements of sweetpotato (Ipomoea batatas (L.) Lam.). Proc. Amer. Soc. Hort. Sci. 86: 527–537.Google Scholar
  15. Jones A. 1967. Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweetpotato (Ipomoea batatas). Bul. No. 1368. USDA Tech.Google Scholar
  16. Jones A. 1986. Sweetpotato heritability estimates and their use in breeding. HortScience 21: 14–17.Google Scholar
  17. Kehrer R.L. 1994. A RAPD analysis of the segregation patterns in the cross of Saccarum offıcinarum (La Purple) with Saccharum robustum (Molokai 5829). MSc Dissertation, Brigham Young University, Salt Lake City, Utah, USA.Google Scholar
  18. Kriegner A. 2001. Genetic linkage mapping, determination of ploidy type, and genetic variability of hexaploid sweetpotato (Ipomoea batatas (L.) Lam.) - 115 Bl. University of Bodenkultur, Vienna, Austria, (Dissertation).Google Scholar
  19. Kubisiak T.L., Nelson C.D., Nance W.L. and Stine M. 1995. RAPD linkage mapping in a longleaf pine x slash pine F1 family. Theor. Appl. Genet. 90: 1119–1127.Google Scholar
  20. Kumagai T., Umemura Y., Baba T. and Iwanaga M. 1990. The inheritance of beta-amylase null in storage roots of sweetpotato, Ipomoea batatas (L.) Lam. Theor. Appl. Genet. 79: 369–376.Google Scholar
  21. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E. et al. 1987. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.Google Scholar
  22. Lee M. 1995. DNA markers and plant breeding programs. Adv. Agron. 55: 265–344.Google Scholar
  23. Magoon M.L., Krishnar R. and Vijaya Bai K. 1970. Cytological evidences on the origin of sweetpotato. Theor. Appl. Genet. 40: 360–366.Google Scholar
  24. Meyer R.C., Milbourne D., Hackett C.A., Bradshaw J.E., McNichol J.W. and Waugh R. 1998. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol. Gen. Genet. 259: 150–160.Google Scholar
  25. Murray M. and Thompson W.F. 1980. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res. 8: 4321–4325.Google Scholar
  26. Mwanga R.O.M., Odongo B., Ocitti p'Obwoya C., Gibson R.W., Smit N.E.J.M. and Carey E.E. 2001. Release of five sweetpotato cultivars in Uganda. Hort. Science (in press).Google Scholar
  27. Nishiyama I., Niyazaki T. and Sakamoto S. 1975. Evolutionary autopolyploidy in sweet potato and its progenitors. Euphytica 24: 197–208.Google Scholar
  28. Plomion C., Bahrman N., Durel C.E. and O'Malley D.M. 1995. Genomic mapping of Pinus pinaster (maritime pine) using RAPD and protein markers. Hered. 74: 661–668.Google Scholar
  29. Qu L. and Hancock J.F. 2001. Detecting and mapping of repulsionphase linkage in polyploids with polysomic inheritance. Theor. Appl. Genet. 103: 136–143.Google Scholar
  30. Ripol M.I., Churchill G.A., Da Silva J.A.G. and Sorrells M. 1999. Statistical aspects of genetic mapping in autopolyploids. Gene. 235: 31–41.Google Scholar
  31. Shiotani I. 1987. Genomic structure and the gene flow in sweetpotato and related species. In: Gregory P. (ed.), Exploration, Maintenance, and Utilization of Sweetpotato Genetic Resources. Rep 1st Sweetpotato Planning Conf. CIP, Lima, Peru, pp. 61–73.Google Scholar
  32. Shiotani I. and Kawase T. 1989. Genomic structure of the sweetpotato and hexaploids in Ipomoea trifida (HBK) DON. Japan J. Breed. 39: 57–66.Google Scholar
  33. Sinha S. and Sharma S.N. 1992. Taxonomic significance of karyomorphology in Ipomoea spp. Jap. Mendel Soc.Google Scholar
  34. Tanksley S.D., Ganal M.W., Prince J.P., De Vincente M.C., Bonierbale M.W., Broun P. et al. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.Google Scholar
  35. Ting Y.C. and Kehr A.E. 1953. Meiotic studies in sweetpotato (Ipomoea batatas (L.) Lam.). J. Hered. 44: 207–211.Google Scholar
  36. Ukoskit K. and Thompson P.G. 1997. Autopolyploidy versus allopolyoloidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato. J. Amer. Soc. Hort. Sci. 122: 822–828.Google Scholar
  37. Van Ooijen J.W. and Voorrips R.E. 2001. Join Map® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.Google Scholar
  38. Verhaegen D. and Plomion C. 1996. Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome 39: 1051–1061.Google Scholar
  39. Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M. et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414.Google Scholar
  40. Vuylsteke M., Mank R., Antonise R., Bastiaans E., Senior M.L., Stuber C.W. et al. 1999. Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99: 921–935.Google Scholar
  41. Wang G.L., Mackill D.J., Bonmann J.M., McCouch S.R., Champoux M.C. and Nelson R.J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136: 1421–1434.Google Scholar
  42. Wu K.K., Burnquist W., Sorrells M.E., Tew T.L., Moore P.H. and Tanksley S.D. 1992. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor. Appl. Genet. 83: 294–300.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Albert Kriegner
    • 1
  • Jim Carlos Cervantes
    • 2
  • Kornel Burg
    • 1
  • Robert O.M. Mwanga
    • 3
  • Dapeng Zhang
    • 2
  1. 1.Environment and Life Science, Dept. of Life Science/BiotechnologyAustrian Research Centers Seibersdorf (ARCS)SeibersdorfAustria
  2. 2.International Potato Center (CIP)LimaPeru
  3. 3.Namulonge Agricultural and Animal Production Research Institute (NAARI), National Agricultural Research Organization (NARO)KampalaUganda

Personalised recommendations