Catalysis Letters

, Volume 87, Issue 1–2, pp 85–90

Soft X-ray Absorption Spectroscopy at the Cutting Edge for Nanomaterials Used in Heterogeneous Catalysis: The State of the Art

  • D. Bazin
  • J. Rehr


The state of the art in numerical simulation of soft X-ray absorption spectra at the L edge of different elements such zinc and gallium is presented. Significant progress has been achieved recently on the quality of the numerical simulation coming from qualitative agreement to a quantitative one. Moreover, it is possible to obtain the local density of states associated with each element. Works are in progress to take into account the different structural characteristics of materials such the lacunar aspect of solids or the distribution of vacancies inside clusters.

Zn- and Ga-based catalyst soft X-ray absorption DeNOx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Topics Catal. 8, 1/2(1999).Google Scholar
  2. [2]
    Topics Catal. 10, 3/4(2000).Google Scholar
  3. [3]
    G. Sankar and J. M. Thomas, Topics Catal. 8 (1999) 1.Google Scholar
  4. [4]
    D. Bazin, L. Guczi and J. Lynch, Appl. Catal. A226 (2002) 87.Google Scholar
  5. [5]
    J. M. Thomas and W. J. Thomas (eds.), Principles and Practice of Heterogeneous Catalysis (VCH, New York, 1997).Google Scholar
  6. [6]
    D. Bazin and L. Guczi, Res. Dev. Phys. Chem. 3 (1999) 387.Google Scholar
  7. [7]
    J. J. Rehr and A. L. Ankudinov, J. Syn. Rad. 8 (2001) 61.Google Scholar
  8. [8]
    K. Okada and A. Kotani, J. Syn. Rad. 8 (2001) 243.Google Scholar
  9. [9]
    M. Havecker, A. Knop-Gericke and Th. Schedel-Niedrig, Appl. Surf. Sci. 142 (1999) 438.Google Scholar
  10. [10]
    P. Srivastava and K. Baberschke, Topics Catal. 10 (2000) 199.Google Scholar
  11. [11]
    J. A. van Bokhoven, A. M. J. van der Eerden, A. D. Smith and D. C. Koningsberger, J. Syn. Rad. 6 (1999) 201.Google Scholar
  12. [12]
    D. Bazin and L. Guczi, Appl. Catal. A213 (2001) 147.Google Scholar
  13. [13]
    R. Revel, P. Parent, C. Laffon and D. Bazin, Catal. Lett. 74 (2001) 189.Google Scholar
  14. [14]
    D. Bazin, P. Parent, C. Laffon, O. Ducreux, J. Lynch, I. Kovacs, L. Guczi and F. De Groot, J. Catal. 189 (2000) 456.Google Scholar
  15. [15]
    J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz and J. L. Brito, J. Phys. Chem. 102 (1998) 1347.Google Scholar
  16. [16]
    Y. Kato, K. Shimizu, N. Matsushita, T. Yoshida, H. Yoshida, A. Satsuma and T. Hattori, Phys. Chem. Chem. Phys. 3 (2001) 1925.Google Scholar
  17. [17]
    A. W. Chester, R. P. A. Absil, G. J. Kennedy, P. Lagarde and A. M. Flank, J. Syn. Rad. 6 (1999) 448.Google Scholar
  18. [18]
    R. Revel, D. Bazin, H. Dexpert, E. Elkaim, A. Seigneurin and M. A. Perrin, J. Phys. Chem. 104 (2000) 9828.Google Scholar
  19. [19]
    K. Nishi, K. I. Shimizu, M. Takamatsu, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida and T. Hattori, J. Phys. Chem. 102 (1998) 10190.Google Scholar
  20. [20]
    M. Pompa, A. M. Flank, P. Lagarde, J. Rife, I. Stekhin, M. Nakazawa, H. Ogasawara and A. Kotani, J. de Phys. IV C2-III (1997) 159.Google Scholar
  21. [21]
    D. Cabaret, Ph. Sainctavit, Ph. Ildefonse and A. M. Flank, J. de Phys. IV C2-III (1997) 157.Google Scholar
  22. [22]
    C. R. Natoli, D. K. Misemer, S. Doniach and F. W. Kutzler, Phys. Rev. A22 (1980) 1104.Google Scholar
  23. [23]
    N. Binsted, J. W. Campbell, S. J. Gurmlan and P. C. Stephenson, SERC Daresbury Laboratory Excuve, 1991.Google Scholar
  24. [24]
    J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72 (2000) 621.Google Scholar
  25. [25]
    A. Filipponi and A. Dicicco, Phys. Rev. B52 (1995) 15122.Google Scholar
  26. [26]
    P. Blaha, K. Schwarz, P. Sorantin and S. B. Trickley, Comput. Phys. Com. 59 (1990) 399.Google Scholar
  27. [27]
    G. A. Somorjai and K. McCrea, Appl. Catal. A222 (2001) 3.Google Scholar
  28. [28]
    J. G. Chen, Surf. Sci. Rep. 30 (1997) 1.Google Scholar
  29. [29]
    J. Stohr, Nexafs Spectroscopy (Springer-Verlag, 1992).Google Scholar
  30. [30]
    F. M. F. De Groot, J. Elect. Spect. Rel. Phen. 67 (1994) 529.Google Scholar
  31. [31]
    J. Rehr and A. L. Ankudinov, J. Elect. Spec. Rel. Phen. 114 (2001) 1115.Google Scholar
  32. [32]
    J. Rehr and R. C. Albers, Phys. Rev. B41 (1990) 8149.Google Scholar
  33. [33]
    M. Iwamoto and N. Mizumo, J. Automot. Eng. D207 (1993) 23.Google Scholar
  34. [34]
    D. Bazin, R. Revel, H. Dexpert, E. Elkaim, J. Lauriat, F. Garin, F. Maire, L. Guczi and G. Lu, J. de Phys. IV-8 (1998) 263.Google Scholar
  35. [35]
    D. Bazin and R. Revel, J. Syn. Rad. 6 (1999) 483.Google Scholar
  36. [36]
    L. A. Grunes, Phys. Rev. B27 (1983) 2111.Google Scholar
  37. [37]
    J. A. Rodriguez, M. Kuhn and J. Hrbek, J. Phys. Chem. 100 (1996) 18240.Google Scholar
  38. [38]
    D. Massiot, R. Revel, C. Magnenet and D. Bazin, Sol. St. Nuc. Mag. Res. 16 (2000) 103.Google Scholar
  39. [39]
    D. Bazin, J. Rehr, D. Sayers and C. Mottet, J. Phys. Chem. 101 (1997) 5332.Google Scholar
  40. [40]
    A. L. Ankudinov, J. J. Rehr, J. Low and S. R. Bare, Phys. Rev. Lett. 86 (2001) 1642.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • D. Bazin
    • 1
  • J. Rehr
    • 2
  1. 1.LURE, Université Paris XIOrsayFrance
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations