Czechoslovak Journal of Physics

, Volume 50, Issue 1, pp 45–51 | Cite as

Pseudo-Riemannian metrics in models based on noncommutative geometry

  • A. Dimakis
  • F. Müller-Hoissen
Article

Abstract

Several examples and models based on noncommutative differential calculi on commutative algebras indicate that a metric should be regarded as an element of the left-linear tensor product of the space of 1-forms with itself. We show how the metric compatibility condition with a linear connection generalizes to this framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Connes: Noncommutative Geometry, Academic Press, San Diego, 1994.Google Scholar
  2. [2]
    G.N. Parfionov and R.R. Zapatrin: gr-qc/9803090.Google Scholar
  3. [3]
    J. Mourad: Class. Quantum Grav. 12 (1995) 965.Google Scholar
  4. [4]
    K. Bresser, A. Dimakis, F. Müller-Hoissen, and A. Sitarz: J. Phys. A 29 (1996) 2705.Google Scholar
  5. [5]
    A. Dimakis, F. Müller-Hoissen, and T. Striker: J. Phys. A 26 (1993) 1927.Google Scholar
  6. [6]
    A. Dimakis and F. Müller-Hoissen: J. Phys. A 29 (1996) 5007.Google Scholar
  7. [7]
    A. Dimakis and F. Müller-Hoissen: Lett. Math. Phys. 39 (1997) 69.Google Scholar
  8. [8]
    A. Dimakis and F. Müller-Hoissen: Czech. J. Phys. 48 (1998) 1319.Google Scholar
  9. [9]
    A. Dimakis and F. Müller-Hoissen: J. Math. Phys. 40 (1999) 1518.Google Scholar
  10. [10]
    H.C. Baehr, A. Dimakis, and F. Müller-Hoissen: J. Phys. A 28 (1995) 3197.Google Scholar
  11. [11]
    A. Dimakis and F. Müller-Hoissen: J. Math. Phys. 35 (1994) 6703.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2000

Authors and Affiliations

  • A. Dimakis
    • 1
  • F. Müller-Hoissen
    • 2
  1. 1.Department of MathematicsUniversity of the AegeanKarlovasi, SamosGreece
  2. 2.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations