Advertisement

Czechoslovak Journal of Physics

, Volume 50, Issue 1, pp 45–51 | Cite as

Pseudo-Riemannian metrics in models based on noncommutative geometry

  • A. Dimakis
  • F. Müller-Hoissen
Article

Abstract

Several examples and models based on noncommutative differential calculi on commutative algebras indicate that a metric should be regarded as an element of the left-linear tensor product of the space of 1-forms with itself. We show how the metric compatibility condition with a linear connection generalizes to this framework.

Keywords

Tensor Product Compatibility Condition Commutative Algebra Noncommutative Geometry Differential Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Connes: Noncommutative Geometry, Academic Press, San Diego, 1994.Google Scholar
  2. [2]
    G.N. Parfionov and R.R. Zapatrin: gr-qc/9803090.Google Scholar
  3. [3]
    J. Mourad: Class. Quantum Grav. 12 (1995) 965.Google Scholar
  4. [4]
    K. Bresser, A. Dimakis, F. Müller-Hoissen, and A. Sitarz: J. Phys. A 29 (1996) 2705.Google Scholar
  5. [5]
    A. Dimakis, F. Müller-Hoissen, and T. Striker: J. Phys. A 26 (1993) 1927.Google Scholar
  6. [6]
    A. Dimakis and F. Müller-Hoissen: J. Phys. A 29 (1996) 5007.Google Scholar
  7. [7]
    A. Dimakis and F. Müller-Hoissen: Lett. Math. Phys. 39 (1997) 69.Google Scholar
  8. [8]
    A. Dimakis and F. Müller-Hoissen: Czech. J. Phys. 48 (1998) 1319.Google Scholar
  9. [9]
    A. Dimakis and F. Müller-Hoissen: J. Math. Phys. 40 (1999) 1518.Google Scholar
  10. [10]
    H.C. Baehr, A. Dimakis, and F. Müller-Hoissen: J. Phys. A 28 (1995) 3197.Google Scholar
  11. [11]
    A. Dimakis and F. Müller-Hoissen: J. Math. Phys. 35 (1994) 6703.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2000

Authors and Affiliations

  • A. Dimakis
    • 1
  • F. Müller-Hoissen
    • 2
  1. 1.Department of MathematicsUniversity of the AegeanKarlovasi, SamosGreece
  2. 2.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations