Journal of Philosophical Logic

, Volume 32, Issue 1, pp 19–42 | Cite as

Mechanism, Truth, and Penrose's New Argument

  • Stewart Shapiro
Article

Abstract

Sections 3.16 and 3.23 of Roger Penrose's Shadows of the mind (Oxford, Oxford University Press, 1994) contain a subtle and intriguing new argument against mechanism, the thesis that the human mind can be accurately modeled by a Turing machine. The argument, based on the incompleteness theorem, is designed to meet standard objections to the original Lucas–Penrose formulations. The new argument, however, seems to invoke an unrestricted truth predicate (and an unrestricted knowability predicate). If so, its premises are inconsistent. The usual ways of restricting the predicates either invalidate Penrose's reasoning or require presuppositions that the mechanist can reject.

incompleteness Lucas mechanism Penrose truth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Benacerraf, P.: 1967, God, the devil, and Gödel, The Monist 51, 9–32.Google Scholar
  2. Boolos, G.: 1995, Introductory note to Gödel (1951), in K. Gödel, Collected Works III, Oxford University Press, Oxford, 1995, pp. 290–304.Google Scholar
  3. Chalmers, D. J.: 1995, Minds, machines, and mathematics: A review of Shadows of mind, by Roger Penrose, Psyche 2(9) (http://psyche.cs.monash.edu.au/v2/psyche-2-09-chalmers.html).Google Scholar
  4. Feferman, S.: 1962, Transfinite recursive progressions of axiomatic theories, J. Symbolic Logic 27, 259–316.Google Scholar
  5. Feferman, S.: 1988, Turing in the land of O(z), in R. Herken (ed.), The Universal Turing Machine, Oxford University Press, New York, pp. 113–147.Google Scholar
  6. Feferman, S.: 1995, Penrose's Gödelian argument: A review of Shadows of mind, by Roger Penrose, Psyche 2(7) (http://psyche.cs.monash.edu.au/v2/psyche-2-07-feferman.html).Google Scholar
  7. Gödel, K.: 1951, Some basic theorems on the foundations of mathematics and their implications, in K. Gödel, Collected Works III, Oxford University Press, Oxford, 1995, pp. 304–323.Google Scholar
  8. Gupta, A. and Belnap, N.: 1993, The Revision Theory of Truth, MIT Press, Cambridge, MA.Google Scholar
  9. Kreisel, G.: 1972, Which number theoretic problems can be solved in recursive progressions on Π11 paths through O?, J. Symbolic Logic 37, 311–334.Google Scholar
  10. Kripke, S.: 1975, Outline of a theory of truth, J. Philos. 72, 690–716.Google Scholar
  11. Kripke, S.: 1982, Wittgenstein on Rules and Private Language, Harvard University Press, Cambridge, MA.Google Scholar
  12. Lindström, P.: 2001, Penrose's new argument, J. Philos. Logic 30, 241–250.Google Scholar
  13. Lucas, J. R.: 1961, Minds, machines, and Gödel, Philosophy 36, 112–137.Google Scholar
  14. Lucas, J. R.: 1996, Minds, machines, and Gödel: A retrospect, in P. J. R. Millican and A. Clark (eds.), Machines and Thought: The Legacy of Alan Turing, Volume 1, Oxford University Press, Oxford, pp. 103–124.Google Scholar
  15. McGee, V.: 1992, Maximal consistent sets of instances of Tarski's schema (T), J. Philos. Logic 21, 235–241.Google Scholar
  16. Penrose, R.: 1989, The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford University Press, Oxford.Google Scholar
  17. Penrose, R.: 1994, Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford University Press, Oxford.Google Scholar
  18. Penrose, R.: 1996, Beyond the doubting of a shadow: A reply to commentaries on Shadows of the mind, Psyche 2(23) (http://psyche.cs.monash.edu.au/v2/psyche-2-23-penrose.html).Google Scholar
  19. Putnam, H.: 1960, Minds and machines, in Sidney Hood (ed.), Dimensions of Mind: A Symposium, New York University Press, New York, pp. 138–164.Google Scholar
  20. Shapiro, S.: 1985, Epistemic and intuitionistic arithmetic, in S. Shapiro (ed.), Intensional Mathematics, North-Holland, Amsterdam, pp. 11–46.Google Scholar
  21. Shapiro, S.: 1998, Incompleteness, mechanism, and optimism, Bull. Symbolic Logic 4, 273–302.Google Scholar
  22. Smullyan, R.: 1992, Gödel's Incompleteness Theorems, Oxford University Press, Oxford.Google Scholar
  23. Turing, A.: 1939, Systems of logic based on ordinals, Proc. London Math. Soc. 45, 161–228.Google Scholar
  24. Weir, A.: 1996, Ultramaximalist minimalism!, Analysis 56, 10-22.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Stewart Shapiro
    • 1
    • 2
  1. 1.Ohio State UniversityColumbusUSA
  2. 2.University of St. AndrewsSt. AndrewsScotland

Personalised recommendations