CO2 Emission Trends in the Cement Industry: An International Comparison

  • Yeonbae Kim
  • Ernst Worrell


We present an in-depth decompositionanalysis using physical indicators oftrends in Carbon dioxide (CO2) emissions in the cementindustry in Brazil, China, South Korea andthe United States. Physical indicatorsallow a detailed analysis of intra-sectoraltrends, in contrast to the often usedmonetary indicators. We assess thecontribution of different factors affectingCO2 emissions in the cement industry,including change in product mix, efficiencyof power generation, changes in fuel mixand changes in energy efficiency. Thedecomposition results show that in allexamined countries, increased productionwas the main contributor to the increase intotal CO2 emissions. Energy-efficiencyimprovement is the most important factorthat led to the reduction of emissionintensities for all countries except Korea.For Korea, structural change in the productmix is the most important factorcontributing to the emission intensityreduction.

cement industry CO2 emissions decomposition analysis physical indicator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ang, B.W.: 1995, 'Decomposition methodology in industrial energy demand analysis', Energy 20(11), 1081-1096.Google Scholar
  2. Ang, B. and Pandiyan, G.: 1997, 'Decomposition of energy induced CO2 emission in manufacturing', Energy Econ. 19, 363-374.Google Scholar
  3. Environmental Energy Technologies Division (EETD): 1999, International Network for Energy Demand Analysis in the Industrial Sector, Berkeley, Lawrence Berkeley National Laboratory.Google Scholar
  4. Farla, J.C.M.: 2000, Physical Indicators of Energy Efficiency, Utrecht, the Netherlands, Ph.D.dissertation, Utrecht University, Department of Science, Technology and Society.Google Scholar
  5. Freeman, S., Niefer, M. and Roop, J.: 1997, 'Measuring industrial energy intensity: Practical issues and problems', Energy Policy 25, 703-714.Google Scholar
  6. policy/policy/climate.htmlGoogle Scholar
  7. IPCC: 1996, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Intergovernmental Panel on Climate Change.Google Scholar
  8. Liaskas, K., Mavrotas, G., Mandaraka, M. and Diakoulaki, D.: 2000, 'Decomposition of industrial CO2 emissions: the case of European Union', Energy Econ. 22, 383-394.Google Scholar
  9. Liu, F., Ross, M. and Wang, S.: 1995, 'Energy efficiency of China's cement industry', Energy 20, 669-681.Google Scholar
  10. Martin, N., Worrell, E. and Price L.: 1999, Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Cement Industry, Berkeley, Lawrence Berkeley National Laboratory.Google Scholar
  11. Nag, B. and Parikh, J.: 2000, 'Indicators of carbon emission intensity from commercial energy use in India', Energy Econ. 22, 441-461.Google Scholar
  12. Park, H.C.: 1998, 'Strategies for assessing energy conservation potentials in the Korean manufacturing sector', Proc. 1998 Seoul Conf. on Energy Use in Manufacturing: Energy Savings and CO 2 Mitigation Policy Analysis, Seoul, Korea.Google Scholar
  13. Park, H.C.: 2000, 'Energy efficiency indicators: comments and suggestions', Proc. Asia Pacific Energy Res. Center's Ann. Conf., Tokyo.Google Scholar
  14. Phylipsen, D., Blok, K. and Worrell, E.: 1998, Handbook on International Comparisons of Energy Efficiency in the Manufacturing Industry, the Netherlands, Dept. of Science, Technology and Society, Utrecht University.Google Scholar
  15. Phylipsen, D., Price, L., Worrell, E. and Block, K.: 1999, 'Industrial energy efficiency in light of climate change negotiations: comparing major developing countries and the U.S.', Proc. 1999 ACEEE Summer Study on Energy Efficiency in Industry, Saratoga Springs, NY.Google Scholar
  16. Price, L., Michaelis, L., Worrell, E. and Khrushch, M.: 1998, 'Sectoral trends and driving forces of global energy use and greenhouse gas emissions', Miti. Adapt. Strat. Gl. Change 3, 263-319.Google Scholar
  17. Price, L., Worrell, E. and Phylipsen, D.: 1999, 'Energy use and carbon dioxide emissions in energyintensive industries in key developing countries', Proc. 1999 Earth Technol. Forum, Washington, DC.Google Scholar
  18. Schipper, L., Ting, M., Khrushch, M. and Golove, W.: 1997, 'The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis', Energy Policy 25(7/9), 651-672.Google Scholar
  19. Sheinbaum, C. and Ozawa, L.: 1998, 'Energy use and CO2 emissions for Mexico's cement industry', Energy 23(9), 725-732.Google Scholar
  20. UN: 1992, United Framework Convention on Climate Change, Geneva, United Nations.Google Scholar
  21. Worrell, E., Smit, R., Phylipsen, D., Blok, K., van der Vleuten, F. and Jansen, J.: 1995. 'International comparison of energy efficiency improvement in the cement industry', Proc. ACEEE 1995 Summer Study on Energy Efficiency in Industry (Vol. II), pp. 123-134.Google Scholar
  22. Worrell, E., Price, L., Martin, N., Farla, J. and Schaeffer, R.: 1997, 'Energy intensity in the iron and steel industry: a comparison of physical and economic indicators', Energy Policy 25(7/9), 727-744.Google Scholar
  23. Worrell, E., Price, L., Martin, N., Hendriks, Ch. and Ozawa Meida, L.: 2001, 'Carbon dioxide emissions from the global cement industry', Annu. Rev. Energy Environ. 26, 303-329.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Yeonbae Kim
    • 1
  • Ernst Worrell
    • 2
  1. 1.Economic Analysis TeamElectronics and Telecommunications Research InstituteYusong-Gu, TaejonKorea Republic
  2. 2.Energy Analysis Department, Lawrence Berkeley National LaboratoryMS 90-4000BerkeleyUSA

Personalised recommendations