Advertisement

Czechoslovak Journal of Physics

, Volume 50, Issue 4, pp 553–559 | Cite as

Experiments TGV I (double-beta decay of 48Ca) and TGV II (double-beta decay of 106Cd and 48Ca)

  • I. Štekl
  • P. Čermák
  • P. Beneš
  • V.B. Brudanin
  • N.I. Rukhadze
  • V.G. Egorov
  • V.E. Kovalenko
  • A. Kovalík
  • A.V. Salamatin
  • V.V. Tsoupko-Sitnikov
  • Ts. Vylov
  • Ch. Briancon
  • F. Šimkovic
Article

Abstract

Present status of experiments TGV I and TGV II is given. The TGV I collaboration has studied the double-beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer TGV (Telescope Germanium Vertical). The preliminary results of \({\text{T}}_{{\text{1/2}}}^{{\text{2}}\nu \beta \beta } = (4.2_{ - 1.3}^{ + 3.3} ) \times 10^{19} \) years and \({\text{T}}_{{\text{1/2}}}^{0\nu \beta \beta } >1.5 \times 10^{21} \) years (90% CL) for double-beta decay of 48 Ca has been found after the processing of experimental data obtained after 8700 hours of measuring time using approximately 1 gramme of 48Ca. The aim of the experiment TGV II is the development of the experimental methods, construction of spectrometers and measurement of the ββ decay (β+β+, β+/EC, EC/EC) of 106Cd particularly the 2νEC/EC mode. The theoretical description and performance of the TGV II spectrometer are also given.

Keywords

Experimental Data Experimental Method Germanium Present Status Theoretical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.C. Haxton and G.J. Stephenson: Prog. Part. Nucl. Phys. 12 (1984) 409.Google Scholar
  2. [2]
    R.K. Bardin et al.: Nucl. Phys. A 158 (1970) 337.Google Scholar
  3. [3]
    Ke You et al.: Phys. Lett. B 265 (1991) 53.Google Scholar
  4. [4]
    A. Balysh et al.: Phys. Rev. Lett. 77 (1996) 5186.Google Scholar
  5. [5]
    Liang Zhao, B.A. Brown, and W.A. Richter: Phys. Rev. C 42 (1990) 1120.Google Scholar
  6. [6]
    O.A. Rumyantsev and M.H. Urin: Pis'ma Zh. Eksp. Teor. Fiz. 61 (1995) 356.Google Scholar
  7. [7]
    Ch. Briancon et al.: Nucl. Instr. Meth. Phys. Res. A 372 (1996) 222.Google Scholar
  8. [8]
    V.B. Brudanin et al.: Izv. RAN, ser. fiz. 60 (1996) 137.Google Scholar
  9. [9]
    F. Boehm and P. Vogel: Physics of massive neutrinos, Cambridge University Press, 1987.Google Scholar
  10. [10]
    M. Doi and T. Kotani: Prog. Theor. Phys. 87 (1992) 1207.Google Scholar
  11. [11]
    J. Suhonen, Phys. Rev. C 48 (1993) 574.Google Scholar
  12. [12]
    M. Hirsch, K. Muto, T. Oda, and H. V. Klapdor-Kleingrothaus: Z. Phys. A 347 (1994) 151.Google Scholar
  13. [13]
    M. Aunola and J. Suhonen: Nucl. Phys. A 602 (1996) 133.Google Scholar
  14. [14]
    F.A. Danevich et al.: Z. Phys. A 355 (1996) 433.Google Scholar
  15. [15]
    A.S. Barabash et al.: Nucl. Phys. A 604 (1996) 115Google Scholar
  16. [16]
    J. Toivanen and J. Suhonen: Phys. Rev. Lett. 75 (1995) 410.Google Scholar
  17. [17]
    J. Schwieger, F. Šimkovic, and Amand Faessler: Nucl. Phys. A 600 (1996) 179. F. Šimkovic, J. Schwieger, M. Veselský, G. Pantis, and Amand Faessler: Phys. Lett. B 393 (1997) 267.Google Scholar
  18. [18]
    I. Štekl, F. Šimkovic, A. Kovalík, and V.B. Brudanin: Czech. J. Phys. 48 (1998) 249.Google Scholar

Copyright information

© Institute of Physics, Academy of Sciences of Czech Republic 2000

Authors and Affiliations

  • I. Štekl
  • P. Čermák
  • P. Beneš
  • V.B. Brudanin
  • N.I. Rukhadze
  • V.G. Egorov
  • V.E. Kovalenko
  • A. Kovalík
  • A.V. Salamatin
  • V.V. Tsoupko-Sitnikov
  • Ts. Vylov
  • Ch. Briancon
  • F. Šimkovic

There are no affiliations available

Personalised recommendations