Evolution of the Mammary Gland Defense System and the Ontogeny of the Immune System

  • Armond S. Goldman


A decisive event in the evolution of mammals from synapsid reptiles was the modification of ventral thoracic–abdominal epidermal glands to form the mammary gland. The natural selection events that drove the process may have been the provision of certain immunological agents in dermal secretions of those nascent mammals. This is mirrored by similar innate immune factors in mammalian sebum and in protherian and eutherian milks. On the basis of studies of existing mammalian orders, it is evident that immune agents in milk such as immunoglobulins, iron-binding proteins, lysozyme, oligosaccharides, and leukocytes compensate for developmental delays in early postnatal production of antimicrobial factors. At least in human milk, anti-inflammatory and immunomodulating agents also evolved to provide different types of protection for the offspring. In addition, investigations reveal that the types or concentrations of immunological agents in milk vary depending upon the type of placenta, lactation pattern, and environment of the species.

evolution immunology mammals mammary gland milk placenta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Darwin (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st edn., John Murray, London.Google Scholar
  2. 2.
    E. Mayr (1991). One Long Argument.Charles Darwin and the Genesis of ModernEvolutionary Thought, Harvard University Press, Cambridge, MA.Google Scholar
  3. 3.
    P. K. Qasba and S. Kumar (1997). Molecular divergence of lysozymes and ®-lactalbumin. Crit.Rev.Biochem.Mol.Biol. 32: 255–306.PubMedGoogle Scholar
  4. 4.
    A. S. Goldman and B. S. Prabhakar (1996). Immunology. In S. B. Baron (ed.), Medical Microbiology, 4th edn., The University of Texas Medical Branch Press, Galveston, TX, pp. 1–34.Google Scholar
  5. 5.
    A. S. Goldman, S. Chheda, and R. Garofalo (1998). Evolution of immunological functions of the mammary gland and the postnatal development of immunity. Pediatr.Res. 43: 155–162.Google Scholar
  6. 6.
    I. Tizard (2001). The protective properties of milk and colostrum in non-human species. In B. Woodward and H. H. Draper (eds.), Advances in Nutritional Research.Immunological Properties of Milk, Vol.10, Kluwer Academic/Plenum Publishers, New York, NY, pp. 130–166.Google Scholar
  7. 7.
    A. S. Goldman, S. Chheda, and S. E. Keeney (1998). Immunology of human milk and host immunity. In R. A. Polin and W. W. Fox (eds.), Fetal and Neonatal Physiology, 3rd edn., Vol. 184, W. B. Saunders, Philadelphia, PA, pp. 2022–2032.Google Scholar
  8. 8.
    R. P. Garofalo and A. S. Goldman (1998). Cytokines, chemokines, and colony stimulating factors in human milk: The 1997 update. Biol.Neonat. 74: 134–142.Google Scholar
  9. 9.
    M. Nei, J. C. Stephens, and N. Saitou (1985). Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol.Biol.Evol. 2: 66–85.PubMedGoogle Scholar
  10. 10.
    A. R. Templeton (1985). The phylogeny of the hominoid primates: A statistical analysis of the DNA-DNA hybridization data. Mol.Biol.Evol. 2: 420–433.PubMedGoogle Scholar
  11. 11.
    L. C. Smith and E. H. Davidson (1994). The echinoderm immune system. Characters shared with vertebrate immune systems and characters arising later in deuterostome phylogeny. Ann.NY Acad.Sci. 712: 213–226.PubMedGoogle Scholar
  12. 12.
    Z. X. Luo, A. W. Crompton, and A. L. Sun (2001). A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.Google Scholar
  13. 13.
    D. G. Blackburn (1993). Lactation: Historical patterns and potential for manipulation. J.Dairy Sci. 76: 3195–3212.Google Scholar
  14. 14.
    L. Paulesu, R. Romagnoli, M. Marchetti, M. Cintorino, P. Ghiara, F. M. Guarino, and G. Ghiara (1995). Cytokines in viviparous reproduction of squamate reptiles: Interleukin-1® (IL-1®) and IL-1¯ in placental structures of a skink. Placenta 16: 193–205.Google Scholar
  15. 15.
    L. Paulesu, C. Cateni, R. Romagnoli, F. Chellini, F. Angelini, F. M. Guarino, V. Rider, K. Imakawa, and E. Bigliardi (2001). Evidence of Hbeta58, a gene involved in mammalian placental development, in the three-toed skink, Chalcides chalcides (Squamata: Scincidae), a viviparous placentotrophic reptile. Placenta 22: 735–741.PubMedGoogle Scholar
  16. 16.
    M. Griffiths (1988). The platypus. Sci.Am. 258: 84–91.Google Scholar
  17. 17.
    M. E. Stewart (1992). Sebaceous gland lipids. Semin.Derma-tol. 11: 100–105.Google Scholar
  18. 18.
    S. Ansai, S. Koseki, Y. Hozumi, and S. Kondo (1995). An immunohisto-chemical study of lysozyme, CD-15 (Leu M1), and gross cystic disease fluid protin-15 in various skin tumors. Assessment of the specificity and sensitivity of markers of apocrine differentiation. Am.J.Dermatopathol. 17: 249–255.PubMedGoogle Scholar
  19. 19.
    R. Alemany, M. R. Vila, C. Franci, G. Egea, F. X. Real, and T. M. Thomson (1993). Glycosyl phosphatidylinositol membrane anchoring of melanotransferrin (p97): Apical compartmentalization in intestinal epithelial cells. J.Cell.Sci.104: 1155–1162.PubMedGoogle Scholar
  20. 20.
    C. G. Teahan, H. A. McKenzie, and M. Griffiths (1991). Some monotreme milk “whey” and blood proteins. Comp.Biochem.Physiol. 99B: 99–118.Google Scholar
  21. 21.
    C. G. Tehan and H. A. McKenzie (1990). Iron (III) binding proteins of echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus). Biochem.Int. 22: 321–328.Google Scholar
  22. 22.
    G. A. Jenkins, J. H. Bradbury, M. Messer, and E. Trifonoff (1984). Determination of the structures of fucosyl-lactose and difucosyl-lactose from the milk of monotremes, using 13 C-n. m.r. spectroscopy. Carbohydr.Res. 126: 157–161.PubMedGoogle Scholar
  23. 23.
    D. S. Newburg (1999). Human milk glycoconjugates that inhibit pathogens. Curr.Med.Chem. 6: 117–127.PubMedGoogle Scholar
  24. 24.
    J. K. Crane, S. S. Azar, A. Stam, and D. S. Newburg (1994). Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (Sta) in T84 intestinal cells. J.Nutr. 124: 2358–2364.Google Scholar
  25. 25.
    M. Aveskogh and L. Hellman (1998). Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica. Eur.J.Immunol. 28: 2738–2750.PubMedGoogle Scholar
  26. 26.
    M. B. Renfree (1973). The composition of fetal fluids of the marsupial Macropus eugenii. Dev.Biol. 33: 62–79.PubMedGoogle Scholar
  27. 27.
    M. Yadav, M. Eadie, and N. F. Stanley (1971). Passage of maternal immunoglobulins to the pouch young of a marsupial, Setonix brachyurus.Aust.J.Zool. 21: 171.Google Scholar
  28. 28.
    E. M. Deane, D. H. Cooper, and M. B. Renfree (1990). Immunoglobulin G levels in fetal and newborn tammar wallabies (Macropus eugenii). Reprod.Fertil.Dev. 2: 369–375.PubMedGoogle Scholar
  29. 29.
    E. M. Deane and D. W. Cooper (1984). Immunology of pouch young marsupials. I: Levels of immunoglobulin, transferrin, and albumin in the blood and milk of euros and wallabies (hill kangaroos): Macropus robustus, marsupialia. Dev.Comp.Immunol. 8: 863–876.PubMedGoogle Scholar
  30. 30.
    F. M. Adamski and J. Demmer (2000). Immunological protection of the vulnerable marsupial pouch young: Two periods of immune transfer during lactation in Trichosurus vulpecula (brushtail possum). Dev.Comp.Immunol. 24: 491–502.PubMedGoogle Scholar
  31. 31.
    C. P. Piotte, C. J. Marshall, M. J. Hubbard, C. Collet, and M. R. Grigor (1997). Lysozyme and ®-lactalbumin from the milk of a marsupial, the common brush-tailed possum (Trichosurus vulpecula). Biochim.Biophys.Acta 1336: 235–242.Google Scholar
  32. 32.
    D. S. Newberg and S. H. Neubauer (1995). Carbohydrates in milk: Analysis, quantities, and significance. In R. G. Jensen (ed.), Handbook of Milk Composition, Academic Press, San Diego, CA, pp. 273–347.Google Scholar
  33. 33.
    L. Young, K. Basden, D. W. Cooper, and E. M. Deane (1997). Cellular components of the milk of the tammar wallaby (Macropus eugenii). Aust.J.Zool. 45: 423–433.Google Scholar
  34. 34.
    E. Eizirik, W. J. Murphy, and S. J. O'Brien (2001). Molecular dating and biogeography of the early placental mammal radiation. J.Hered. 92: 212–219.PubMedGoogle Scholar
  35. 35.
    S. Easteal (1999). Molecular evidence for the early divergence of placental mammals. Bioessays 21: 1052–1058.Google Scholar
  36. 36.
    W. J. Murphy, E. Eizirik, S. J. O'Brien, O. Madsen, M. Scally, C. J. Douady, E. Teeling, O. A. Ryder, M. J. Stanhope, W. W. de Jong, and M. S. Springer (2001). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.PubMedGoogle Scholar
  37. 37.
    T. D. White, G. Suwa, and B. Asfaw (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371: 306–312.PubMedGoogle Scholar
  38. 38.
    A. Hill, S. Ward, A. Deino, A. Curtis, and R. Drake (1992). Earliest Homo.Nature 355: 719–722.Google Scholar
  39. 39.
    F. J. Ayala (1995). The myth of Eve: Molecular biology and human origins. Science 270: 1930–1936.PubMedGoogle Scholar
  40. 40.
    R. V. Collura and C.-B. Stewart (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378: 485–489.PubMedGoogle Scholar
  41. 41.
    M. F. Hammer (1995). A recent common ancestry for human Y chromosomes. Nature 378: 376–378.PubMedGoogle Scholar
  42. 42.
    B. Wood (1992). Origin and evolution of the genus Homo. Nature 355: 783–790.PubMedGoogle Scholar
  43. 43.
    N. Takahata, Y. Satta, and J. Klein (1995). Divergence time and population size in the lineage leading to modern humans. Theor.Popul.Biol. 48: 198–221.PubMedGoogle Scholar
  44. 44.
    J. H. Edwards (1994). Comparative genome mapping in mammals. Curr.Opin.Genet.Dev. 4: 861–867.PubMedGoogle Scholar
  45. 45.
    M. Goodman, W. J. Bailey, K. Hayasaka, M. J. Stanhope, J. Slightom, and J. Czelusniak (1994). Molecular evidence on primate phylogeny from DNA sequences. Am.J.Phys.Anthropol. 94: 3–24.Google Scholar
  46. 46.
    J. Shoshani, C. P. Groves, E. L. Simons, and G. F. Gunnell (1996). Primate phylogeny: Morphological vs. molecular results. Mol.Phylogenet.Evol. 5: 102–154.Google Scholar
  47. 47.
    L. Pemberton, J. Taylor-Papadimitriou, and S. J. Gendler (1992). Antibodies to the cytoplasmic domain of the MUC 1 mucin show conservation throughout mammals. Biochem.Biophys.Res.Commun. 185: 167–175.Google Scholar
  48. 48.
    K. R. Acharya, D. I. Stuart, D. C. Phillips, H. A. McKenzie, and C. G. Teahan (1994). Models of the three-dimensional structures of echidna, horse, and pigeon lysozymes: Calcium-binding lysozymes and their relationship with alpha-lactalbumins. J.Protein Chem. 13: 569–584.Google Scholar
  49. 49.
    D. Newburg (1996). Oligosaccharides and glycoconjugates in human milk. J.Mammary Gland Biol.Neoplasia 1: 271–283.Google Scholar
  50. 50.
    P. K. Gopal and H. S. Gill (2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br.J.Nutr.84(Suppl. 1):S69–S74.PubMedGoogle Scholar
  51. 51.
    A. S. Goldman, C. Garza, C. A. Johnson, B. L. Nichols, and R. M. Goldblum (1982). Immunologic factors in human milk during the first year of lactation. J.Pediatr. 100: 563–567.PubMedGoogle Scholar
  52. 52.
    N. F. Butte, R. M. Goldblum, L. M. Fehl, K. Loftin, E. O. Smith, C. Garza, and A. S. Goldman (1984). Daily ingestion of immunologic components in human milk during the first four months of life. Acta Paediatr.Scand. 73: 296–301.Google Scholar
  53. 53.
    N. L. Norcross (1982). Secretion and composition of colostrums and milk. J.Am.Vet.Med.Assoc. 181: 1057–1060.PubMedGoogle Scholar
  54. 54.
    H. Korhonen, P. Marnila, and H. S. Gill (2000). Milk immunoglobulins and complement factors. Br.J.Nutr. 84(Suppl. 1):S75–S80.Google Scholar
  55. 55.
    L. Sanchez, P. Aranda, M. D. Perez, and M. Calvo (1988). Concentration of lactoferrin and transferrin throughout lac-tation in cow's colostrum and milk. Biol.Chem.Hoppe Seyler 369: 1005–1008.Google Scholar
  56. 56.
    J. Goudswaard, E. C. Bakker-de Koff, and H. P. van Ravenswaaij-Kraan (1978). Lysozyme and its presence in bovine milk and serum. Tijdschr Diergeneeskd 103: 445–450.Google Scholar
  57. 57.
    L. Gothefors and S. Marklund (1975). Lactoperoxidase activity in human milk and in saliva of newborn infants. Infect.Immun. 11: 1210–1215.Google Scholar
  58. 58.
    B. Reiter (1985). The lactoperoxidase system of bovine milk. In R. M. Pritt and J. Tenovuo (eds.), The Lactoperoxidase System: Chemistry and Biologic Significance, Marcel Dekker, New York, pp. 123–144.Google Scholar
  59. 59.
    H. Schroten (2001). Chemistry of milk mucins and their anti-microbial action. Adv.Nutr.Res.Immunol.Prop.Milk 10: 231–245.Google Scholar
  60. 60.
    V. Bl ¨ um (1985). Vertebrate Reproduction, Springer-Verlag, Berlin.Google Scholar
  61. 61.
    J. E. Butler (1986). Biochemistry and biology of ruminant immunoglobulins. Prog.Vet.Microbiol.Immunol. 2: 1–53.Google Scholar
  62. 62.
    J. C. Olson and G. A. Leslie (1982). IgD: A component of the secretory immune system? Ann.N.Y.Acad.Sci. 399: 97–104.Google Scholar
  63. 63.
    E. F. Thatcher and L. J. Gershwen (1989). Colostral transfer of bovine immunoglobulin E and dynamics of serum IgE in calves. Vet.Immunol.Immunopathol. 29: 325–334.Google Scholar
  64. 64.
    M. F. Cole, C. A. Hale, and S. Sturzenegger (1992). Identification of two subclasses of IgA in the chimpanzee (Pan troglodytes). J.Med.Primatol. 21: 275–278.Google Scholar
  65. 65.
    U. Galili (1993). Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody. Springer Semin.Immunopathol. 15: 155–171.PubMedGoogle Scholar
  66. 66.
    R. M. Hamadeh, U. Galili, P. Zhou, and J. M. Griffiss (1995). Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin.Diagn.Lab.Immunol. 2: 125–131.PubMedGoogle Scholar
  67. 67.
    L. A. Davidson and B. Lonnerdal (1986). Isolation and char-acterization of rhesus monkey milk lactoferrin. Pediatr.Res.20: 197–201.PubMedGoogle Scholar
  68. 68.
    J. K. Cho, N. Azuma, C. H. Lee, J. H. Yu, and C. Kanno (2000). Purification of membrane-bound lactoferrin from the human milk fat globule membrane. Biosci.Biotechnol.Biochem.64: 633–635.PubMedGoogle Scholar
  69. 69.
    P. L. Masson, J. F. Heremans, J. J. Prignot, and G. Wauters (1966). Immunochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 21: 538–544.PubMedGoogle Scholar
  70. 70.
    Y. Andersson, S. Lindquist, C. Lagerqvist, and O. Hernell (2000). Lactoferrin is responsible for the fungistatic effect of human milk. Early Hum.Dev. 59: 95–105.PubMedGoogle Scholar
  71. 71.
    W. Bellamy, H. Wakabayashi, M. Takase, K. Kawase, S. Shimamura, and M. Tomita (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med.Microbiol.Immunol.(Berl.) 182: 97–105.Google Scholar
  72. 72.
    L. H. Vorland, H. Ulvatne, J. Andersen, H. Haukland, O. Rekdal, J. S. Svendsen, and T. J. Gutteberg (1998). Lacto-ferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand.J.Infect.Dis. 30: 513–517.PubMedGoogle Scholar
  73. 73.
    D. Arnold, A. M. Di Biase, M. Marchetti, A. Pietrantoni, P. Valenti, L. Seganti, and F. Superti (2002). Antiadenovirus activity of milk proteins: Lactoferrin prevents viral infection. Antiviral Res. 53: 153–158.PubMedGoogle Scholar
  74. 74.
    N. M. Clarke and J. T. May (2000). Effect of antimicrobial factors in human milk on rhinoviruses and milk-borne cytomegalovirus in vitro. J.Med.Microbiol. 49: 719–723.PubMedGoogle Scholar
  75. 75.
    F. Superti, M. G. Ammendolia, P. Valenti, and L. Seganti (1997). Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med.Microbiol.Immunol.(Berl.). 186: 83–91.Google Scholar
  76. 76.
    M. Moriuchi and H. Moriuchi (2001). A milk protein lacto-ferrin enhances human T cell leukemia virus type I and sup-presses HIV-1 infection. J.Immunol. 166: 4231–4236.PubMedGoogle Scholar
  77. 77.
    A. S. Goldman, L. W. Thorpe, R. M. Goldblum, and L. ° A. Hanson (1986). Anti-inflammatory properties of human milk. Acta Paediatr.Scand. 75: 689–695.Google Scholar
  78. 78.
    A. S. Goldman, C. Garza, R. J. Schanler, and R. M. Goldblum (1990). Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr.Res. 27: 252–255.PubMedGoogle Scholar
  79. 79.
    P. Chaturvedi, C. D. Warren, C. R. Buescher, L. K. Pickering, and D. S. Newburg (2001). Survival of human milk oligosaccharides in the intestine of infants. Adv.Exp.Med.Biol.Immunol.Prop.Milk 501: 315–323.Google Scholar
  80. 80.
    J. A. Grobler, K. R. Rao, S. Pervaiz, and K. Brew (1994). Sequences of two highly divergent canine type c lysozymes: Implications for the evolutionary origins of the lysozyme/alpha-lactalbumin superfamily. Arch.Biochem.Biophys. 313: 360–366.Google Scholar
  81. 81.
    D. M. Chipman and N. Sharon (1969). Mechanism of lysozyme action. Science 165: 454–465.Google Scholar
  82. 82.
    R. T. Ellison III and T. J. Giehl (1991). Killing of Gram-negative bacteria by lactoferrin and lysozyme. J.Clin.Invest. 88: 1080–1091.Google Scholar
  83. 83.
    P. W. Park, K. Biedermann, L. Mecham, D. L. Bissett, and R. P. Mecham (1996). Lysozyme binds to elastin and protects elastin from elastase-mediated degradation. J.Invest.Dermatol. 106: 1075–1080.PubMedGoogle Scholar
  84. 84.
    A. Pellegrini, U. Thomas, N. Bramaz, P. Hunziker, and H. P. von Fellenberg (1999). Isolation and identification of three bactericidal domains in the bovine ®-lactalbumin molecule. Biochim.Biophys.Acta 1426: 439–448.Google Scholar
  85. 85.
    M. Svensson, A. Hakansson, A. K. Mossberg, S. Linse, and C. Svanborg (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc.Natl.Acad.Sci.U.S.A. 97: 4221–4226.Google Scholar
  86. 86.
    C. Kunz, S. Rudloff, W. Schad, and D. Braun (1999). Lactose-derived oligosaccharides in the milk of elephants: Comparison with human milk. Br.J.Nutr. 82: 391–399.Google Scholar
  87. 87.
    C. D. Warren, P. Chaturvedi, A. R. Newburg, O. T. Oftedal, C. D. Tilden, and D. S. Newburg (2001). Comparison of oligosaccharides in milk specimens from humans and twelve other species. Adv.Exp.Med.Biol.Immunol.Prop.Milk 501: 325–332.Google Scholar
  88. 88.
    D. P. Wirt, L. T. Adkins, K. H. Palkowetz, F. C. Schmalstieg, and A. S. Goldman (1992). Activated-memory T lymphocytes in human milk. Cytometry 13: 282–290.Google Scholar
  89. 89.
    S. E. Keeney, F. C. Schmalstieg, K. H. Palkowetz, H. E. Rudloff, B.-M., Le, and A. S. Goldman (1993). Activated neutrophils and neutrophil activators in human milk. Increased expression of CD11b and decreased expression of L-selectin. J.Leukocyte Biol. 54: 97–104.Google Scholar
  90. 90.
    C. S. Lee, I. McCauley, and P. E. Hartman (1983). Light and electron microscopy of cells in pig colostrum, milk, and involution secretions. Acta Anat. 117: 270–280.Google Scholar
  91. 91.
    E. A. Wagstrom, K.-J. Yoon, and J. J. Zimmerman (2000). Immune components in porcine mammary secretions. Viral Immunol. 13: 383–397.Google Scholar
  92. 92.
    A. S. Goldman and R. M. Goldblum (1997). Transfer of maternal leukocytes to the infant by human milk. In L. Olding (ed.), Reproductive Immunology/Current Topics in Microbiology and Immunology, Springer-Verlag, Heidelberg, Germany, pp. 205–213.Google Scholar
  93. 93.
    S. Chheda, K. H. Palkowetz, D. K. Rassin, and A. S. Goldman (1996). Deficient quantitative expression of CD45 isoforms on CD4C and CD8C T-cell subpopulations and subsets of CD45RA low CD45RO low T cells in newborn blood. Biol.Neonat. 69: 128–132.Google Scholar
  94. 94.
    Y. Weinrauch, D. Drujan, S. D. Shapiro, J. Weiss, and A. Zychlinsky (2002). Neutrophil elastase targets virulence factors of enterobacteria. Nature 417: 91–94.PubMedGoogle Scholar
  95. 95.
    R. P. Garofalo and A. S. Goldman (1999). Expression of func-tional immunomodulatory and antiinflammatory factors in human milk. In C. Wagner (ed.), Clinical Aspects of Human Milk and Lactation, Clinics in Perinatology, Vol.26, W.B. Saunders Company, Philadelphia, PA, pp. 361–377.Google Scholar
  96. 96.
    H. Lindmark-Mansson and B. Akesson (2000). Antioxidant factors in milk. Br.J.Nutr. 84(Suppl. 1):S103–S110.PubMedGoogle Scholar
  97. 97.
    E. Schlimme, D. Martin, and H. Meisel (2000). Nucleosides and nucleotides: Natural bioactive substances in milk and colostrum. Br.J.Nutr. 84: S59–S68.PubMedGoogle Scholar
  98. 98.
    H. S. Gill, F. Doull, K. J. Rutherfurd, and M. L. Cross (2000). Immunoregulatory peptides in bovine milk. Br.J.Nutr.84(Suppl. 1):S111–S117.PubMedGoogle Scholar
  99. 99.
    A. S. Goldman (2000). Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J.Nutr. 130(Suppl. 2S):S426–S431.Google Scholar
  100. 100.
    E. Lindh (1975). Increased resistance of immunoglobulin dimers to proteolytic degradation after binding of secretory component. J.Immunol. 114: 284–286.PubMedGoogle Scholar
  101. 101.
    R. R. Samson, C. Mirtle, and D. B. L. McClelland (1980). the effect of digestive enzymes upon the binding and bacterio-static properties of lactoferrin and vitamin B12 binder in human milk. Acta Paediatr.Scand. 59: 517–523.Google Scholar
  102. 102.
    E. S. Buescher and P. McWilliams-Koeppen (1998). Soluble tumor necrosis factor-alpha (TNF-alpha) receptors in human colostrum and milk bind to TNF-alpha and neutralize TNF-alpha bioactivity. Pediatr.Res. 44: 37–42.PubMedGoogle Scholar
  103. 103.
    O. Koldovsky (1996). Digestive–absorptive functions in fetuses, infants, and children. In W. A. Walker and J. B. Watkins (eds.), Nutrition in Pediatrics, Basic Science and Clinical Application, 2nd edn., B. C. Decker, London, pp. 233–247.Google Scholar
  104. 104.
    A. S. Goldman, C. Garza, R. J. Schanler, and R. M. Goldblum (1990). Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr.Res. 27: 252–255.PubMedGoogle Scholar
  105. 105.
    V. Brantl (1985). Novel opioid peptides derived from human ¯-casein: Human ¯-casomorphins. Eur.J.Pharmacol.106: 213–214.Google Scholar
  106. 106.
    C. E. Issacs (2001). The antimicrobial function of milk lipids. In B. Woodward and H. H. Draper (eds.), Advances in Nutritional Research.Immunological Properties of Milk, Vol.10, Plenum, New York, pp. 271–285.Google Scholar
  107. 107.
    Y. Ge, D. L. MacDonald, K. J. Holroyd, C. Thornsberry, H. Wexler, and M. Zasloff (1999). In vitro antibacterial peptides of pexiganan, an analog of magainin. Antimicrob.Agents Chemother. 43: 782–788.PubMedGoogle Scholar
  108. 108.
    S. Krisanaprakornkit, J. R. Kimball, A. Weinberg, R. P. Darveau, B. W. Bainbridge, and B. A. Dale (2000). Inducible expression of human ¯ defensin 2 by Fusobacterium nucleatum in oral epithelial cells: Multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect.Immun. 68: 2907–2915.PubMedGoogle Scholar
  109. 109.
    C. Linnæi (1735). Systema naturæ sive regna tria naturæ systematice proposita per classes, ordines, genera, & species, Theodorum Haak, Lugduni Batavorum.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Armond S. Goldman
    • 1
  1. 1.Division of Immunology/Allergy/Rheumatology, Department ofPediatricsUniversity of Texas Medical BranchGalveston

Personalised recommendations