Artificial Intelligence Review

, Volume 19, Issue 4, pp 285–330 | Cite as

A Taxonomy of Recommender Agents on the Internet

  • Miquel Montaner
  • Beatriz López
  • Josep Lluís de la Rosa


Recently, Artificial Intelligence techniques have proved useful inhelping users to handle the large amount of information on the Internet.The idea of personalized search engines, intelligent software agents,and recommender systems has been widely accepted among users who requireassistance in searching, sorting, classifying, filtering and sharingthis vast quantity of information. In this paper, we present astate-of-the-art taxonomy of intelligent recommender agents on theInternet. We have analyzed 37 different systems and their references andhave sorted them into a list of 8 basic dimensions. These dimensions arethen used to establish a taxonomy under which the systems analyzed areclassified. Finally, we conclude this paper with a cross-dimensionalanalysis with the aim of providing a starting point for researchers toconstruct their own recommender system.

agents information filtering personalization profile exploitation profile generation profile maintenance recommender systems taxonomy user modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amazon (2001). Scholar
  2. Armstrong, R., Freitag, D., Joachims, T. & Mitchell, T. (1995). WebWatcher: A Learning Apprentice for the World Wide Web. In 1995 AAAI Spring Symposium on Information Gathering from Heterogeneous Distributed Environments.Google Scholar
  3. Asnicar, F. & Tasso, C. (1997). IfWeb: A Prototype of User Models Based Intelligent Agent for Document Filtering and Navigation in the World Wide Web. In Proceedings of UM'97. Sardinia, Italy: Chia Laguna.Google Scholar
  4. Balabanovic, M. & Shoham, Y. (1997). Combining Content-Based and Collaborative Recommendation. Communications of the ACM.Google Scholar
  5. Basu, C., Hirsh, H. & Cohen, W. (1998). Recommendation as Classification: Using Social and Content-Based Information in Recommendation. In Proceedings of AAAI'98, 714–720.Google Scholar
  6. Berney, B. & Ferneley, E. (1999). Casmir: Information Retrieval Based on Collaborative User Profiling. In Proceedings of PAAM'99, 41–56. Lancashire: The Practical Application Company Ltd.Google Scholar
  7. Billsus, D. & Pazzani, M. J. (1998). Learning Collaborative Information Filters. In Proceedings of the International Conference on Machine Learning. Madison, WI: Morgan Kaufmann Publishers.Google Scholar
  8. Billsus, D. & Pazzani, M. J. (1999). A Hybrid User Model for News Classification. In Proceedings of UM'99, 99–108. Wien, New York: Springer-Verlag.Google Scholar
  9. Boone, G. (1998). Concept Features in RE:Agent, an Intelligent Email Agent. In The Second International Conference on Autonomous Agents (Agents' 98). Minneapolis/St. Paul.Google Scholar
  10. Breese, J., Heckerman, D. & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Uncertainty in Artificial Intelligence: Proceedings of the 14th Conference, 43–52. San Francisco: Morgan Kaufmann.Google Scholar
  11. Buckley, C. & Salton, G. (1995). Optimization of Relevance Feedback Weights. In Fox, E., Ingwersen, P. & Fidel, R. (eds.) Proceedings of the Eighteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 351–357.Google Scholar
  12. Buckley, C., Singhal, A., Mitra, M. & Salton, G. (1996). New Retrieval Approaches Using SMART. In Proceedings of TREC-4. NIST Special Publication.Google Scholar
  13. Carroll, J. & Rosson, M. B. (1987). The Paradox of the Active User. In Carroll, J. M. (ed.) Interfacing Thought: Cognitive Aspects of Human-Computer Interaction, 26–28. Cambridge, MA: MIT Press.Google Scholar
  14. CDNow (2001). Scholar
  15. Chatterjee, P., Hoffman, D. L. & Novak, T. P. (1998). Modeling the Clickstream: Implications for Web-Based Advertising Efforts. Working Paper. Vanderbilt University.Google Scholar
  16. Chen, L. & Sycara, K. (1998). Webmate: A Personal Agent for Browsing and Searching. In Proceedings of AGENTS' 98, 132–139. ACM.Google Scholar
  17. Chen, Z., Meng, X., Zhu, B. & Fowler, R. (2000). WebSail: From On-Line Learning to Web Search. In Proceedings of the 2000 International Conference on Web Information Systems Engineering.Google Scholar
  18. Clark, P. & Niblett, T. (1989). The CN2 Induction Algorithm. In Machine Learning, Vol. 3, 261–283. The Netherlands: Kluwer Academic Publishers.Google Scholar
  19. Cohen, W. (1995). Fast Effective Rule Induction. In Proceedings of ML95, 115–123. San Francisco: Morgan Kaufmann.Google Scholar
  20. Cohen, W. & Singer, Y. (1999). A Simple, Fast, and Effective Rule Learner. In Proceedings of AAAI-99, 335–342.Google Scholar
  21. Cooley, R., Tan, P. N. & Srivastava, J. (1999). WebSift: The Web Site Information Filter System. In Proceedings of the 1999 KDD Workshop on Web Mining. San Diego, CA: Springer-Verlag.Google Scholar
  22. Cost, S. & Salzberg, S. (1993). A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Machine Learning 10: 57–78.Google Scholar
  23. Cunningham, P., Bergmann, R., Schmitt, S., Traphoner, R., Breen, S. & Smyth, B. (2001). WebSell: Intelligent Sales Assistants for the World Wide Web. In E-2001.Google Scholar
  24. Duda, R. & Hart, P. (1973). Pattern Classification and Scene Analysis. New York: John Wiley & Sons, ISBN-0471223611.Google Scholar
  25. Goldberg, D., Nichols, D., Oki, B. M. & Terry, D. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35: 61–70.Google Scholar
  26. Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J. & Riedl, J. (1999). Combining Collaborative Filtering with Personal Agents for Better Recommendations. In Proceedings of AAAI, Vol. 35, 439–446. AAAI Press.Google Scholar
  27. Greening, D. (1997). Building Consumer Trust with Accurate Product Recommendations. Likeminds White Paper LMWSWP-210-6966.Google Scholar
  28. Hayes, C. & Cunningham, P. (1999). Smart Radio – a Proposal. In Trinity College Dublin, Computer Science, Technical Report, TCD-CS-1999-24.Google Scholar
  29. Hayes, C. & Cunningham, P. (2000). Smart Radio: Building Music Radio on the Fly. In Proceedings of Expert Systems 2000 (ES2000). Cambridge, UK.Google Scholar
  30. Hayes, C., Cunningham, P. & Smyth, B. (2001). A Case-Based Reasoning View of Automated Collaborative Filtering. In Trinity College Dublin, Computer Science, Technical Report, TCD-CS-2001-09.Google Scholar
  31. Herlocker, J., Konstan, J., Borchers, A. & Riedl, J. (1999). An Algorithmic Framework for Performing Collaborative Filtering. In Proceedings of the 1999 Conference on Research and Development in Information Retrieval.Google Scholar
  32. Herlocker, J., Konstan, J. & Riedl, J. (2000). Explaining Collaborative Filtering Recommendations. In Proceedings of ACM 2000 Conference on Computer Supported Cooperative Work.Google Scholar
  33. Hill, W., Stead, L., Rosenstein, M. & Furnas, G. (1995). Recommending and Evaluating Choices in a Virtual Community of Use. In Proceedings of CHI'95, 194–201. Denver.Google Scholar
  34. Hofmann, T. & Puzicha, J. (1999). Latent Class Models for Collaborative Filtering. In Proceedings of IJCAI'99, 688–693. Stockholm, ISBN 1-55860-613-0.Google Scholar
  35. Holte, R. C. & Yan, N. Y. (1996). Inferring What a User Is Not Interested In. In AAAI Spring Symp. on Machine Learning in Information Access. Stanford.Google Scholar
  36. Huberman, B. & Kaminsky, M. (1996). Beehive: A System for Cooperative Filtering and Sharing of Information. Technical Report, Dynamics of Computation Group. Palo Alto, CA: Xerox, Palo Alto Research Center.Google Scholar
  37. Jennings, A. & Higuchi, H. (1993). A User Model Neural Network for a Personal News Service. User Modeling and User-Adapted Interaction 3: 1–25.Google Scholar
  38. Jensen, F. V. (1996). An Introduction to Bayesian Networks. New York: Springer.Google Scholar
  39. Joachims, T., Freitag, D. & Mitchell, T. (1997). WebWatcher: A Tour Guide for the World Wide Web. In Proceedings of IJCAI'97, 770–775. Nagoya, Japan.Google Scholar
  40. Kamba, T., Bharat, K. & Albers, M. C. (1995). The Krakatoa Chronicle – an Interactive, Personalized, Newspaper on the Web. In Proceedings of the Fourth International World Wide Web Conference, 159–170.Google Scholar
  41. Kobsa, A., Koenemann, J. & Pohl, W. (2001). Personalized Hypermedia Presentation Techniques for Improving Online Customer Relationships. The Knowledge Engineering Review 16: 111–155.Google Scholar
  42. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L. & Riedl, J. (1997). Grouplens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40: 77–87.Google Scholar
  43. Koychev, I. (2000). Gradual Forgetting for Adaptation to Concept Drift. In Proceedings of ECAI 2000 Workshop Current Issues in Spatio-Temporal Reasoning.Google Scholar
  44. Krulwich, B. (1997). LifeStyle Finder: Intelligent User Profiling Using Large-Scale Demographic Data. AI Magazine 18(2): 37–45.Google Scholar
  45. Krulwich, B. & Burkey, C. (1995). ContactFinder: Extracting Indications of Expertise and Answering Questions with Referrals. Working Notes of the 1995 Fall Symposium on Intelligent Knowledge Navigation and Retrieval, 85–91. Technical Report FS-95-03, The AAAI Press.Google Scholar
  46. Krulwich, B. & Burkey, C. (1996). Learning User Information Interests Through Extraction of Semantically Significant Phrases. In Proceedings of he AAAI Spring Symposium on Machine Learning in Information Access. Stanford, CA.Google Scholar
  47. Lang, K. (1995). NewsWeeder: Learning to Filter News. In Proceedings of the 12th International Conference on Machine Learning, 331–339. Lake Tahoe, CA.Google Scholar
  48. Lieberman, H. (1995). Letizia: An Agent that Assists Web Browsing. In Proceedings of the IJCAI'95, 924–929.Google Scholar
  49. Lieberman, H., Van Dyke, N. W. & Vivacqua, A. S. (1999). Let's Browse: A Collaborative Web Browsing Agent. In Proceedings of International Conference on Intelligent User Interfaces, 924–929.Google Scholar
  50. Maes, P. (1994). Agents that Reduce Work and Information Overload. Communications of the ACM 37(7): 30–40.Google Scholar
  51. Maloof, M. A. & Michalski, R. S. (2000). Selecting Examples for Partial Memory Learning. Machine Learning 41: 27–52.Google Scholar
  52. Minio, M. & Tasso, C. (1996). User Modeling for Information Filtering on Internet Services: Exploiting an Extended Version of the UMT Shell. In UM96 Workshop on User Modeling for Information Filtering on the WWW. Kailua-Kona, Hawaii.Google Scholar
  53. Mitchell, T., Caruana, R., Freitag, D., McDermott, J. & Zabowski, D. (1994). Experience with a Learning Personal Assistant. Communications of the ACM 37(7): 81–91.Google Scholar
  54. Mitchell, T. M., Mahadevan, S. & Steinberg, L. (1985). Leap: A Learning Apprentice for VLSI Design. In Proceedings of IJCAI'85, 573–580. Los Altos, CA: Morgan Kaufmann.Google Scholar
  55. Mladenic, D. (1996). Personal WebWatcher: Implementation and Design. Technical Report IJS-DP-7472, Department of Intelligent Systems. Slovenia: J. Stefan Institute.Google Scholar
  56. Mobasher, B., Cooley, R. & Srivastava, J. (2000). Automatic Personalization Based on Web Usage Mining. Communications of the ACM 43(8).Google Scholar
  57. Morita, M. & Shinoda, Y. (1994). Information Filtering Based on User Behaviour Analysis and Best Match Text Retrieval. In Proceedings of SIGIR'94, 272–81. Dublin, Ireland: Springer-Verlag.Google Scholar
  58. Moukas, A. (1997). Amalthaea: Information Filtering and Discovery Using a Multiagent Evolving System. Journal of Applied AI 11(5): 437–457 (Dublin, Ireland, Springer-Verlag).Google Scholar
  59. Nichols, D. M. (1997). Implicit Rating and Filtering. In Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, 31–36.Google Scholar
  60. Orwant, L. J. (1995). Heterogeneous Learning in the Doppelganger User Modelling System. User Modelling and User Adapted Interaction 4(2): 107–130.Google Scholar
  61. Pazzani, M. (1999). A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review.Google Scholar
  62. Pazzani, M. & Billsus, D. (1997). Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27: 313–331 (Kluwer Academic Publishers).Google Scholar
  63. Pazzani, M., Muramatsu, J. & Billsus, D. (1996). Syskill & Webert: Identifying Interesting Web Sites. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 54–61.Google Scholar
  64. Potter, G. & Trueblood, R. (1988). Traditional, Semantic, and Hyper-Semantic Approaches to Data Modeling. IEEE Computer 21(6): 53–63.Google Scholar
  65. Pretschner, A. & Gauch, S. (1999). Ontology-Based Personalized Search. In Proceedings of ICTAI'99, 391–398.Google Scholar
  66. Quinlan, J. R. (1983). Learning Efficient Classification Procedures and Their Application to Chess End Games. In Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (eds.) Machine Learning: An Artificial Intelligence Approach, 463–482.Google Scholar
  67. Quinlan, J. R. (1994). The Minimum Description Length Principle and Categorical Theories. In Proceedings of ML'94. San Mateo: Morgan Kaufmann.Google Scholar
  68. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. & Riedl, J. (1994). Grouplens: An Open Architecture for Collaborative Filtering of Netnews. In Proceedings of ACM CSCW'94, 175–186.Google Scholar
  69. Rich, E. (1979). User Modeling via Stereotypes. Cognitive Science 3: 329–354.Google Scholar
  70. Riordan, A. & Sorensen, H. (1995). An Intelligent Agent for High-Precision Information Filtering. In Proceedings of the CIKM-95 Conference.Google Scholar
  71. Sakagami, H., Kamba, T. & Koseki, Y. (1997). Learning Personal Preferences on Online Newspaper articles for User Behaviors. In Proc. 6th Int. World Wide Web Conference, 291–300.Google Scholar
  72. Salton, G. & Buckley, C. (1988). Term-Weighting Approaches in Automatic Text Retrieval. Information Processing and Management 24(5): 513–523.Google Scholar
  73. Salton, G. & Buckley, C. (1990). Improving Retrieval Performance by Relevance Feedback. In Spark Jones and Willet (eds.) Readings in Information Retrieval, Vol. 24, No.5, 513–523. San Francisco, CA: Morgan Kauffman.Google Scholar
  74. Salton, G. & McGill, M. (1983). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill Publishing Company.Google Scholar
  75. Sarwar, B. M., Karypis, G., Konstan, J. A. & Riedl, J. (2000). Analysis of Recommender Algorithms for E-Commerce. In ACM E-Commerce 2000 Conference.Google Scholar
  76. Schafer, J. B., Konstan, J. & Riedl, J. (2001). Electronic Commerce Recommender Applications. Journal of Data Mining and Knowledge Discovery 5: 115–152.Google Scholar
  77. Schwab, I., Kobsa, A. & Koychev, I. (2000). Learning about Users from Observation. In AAAI 2000 Spring Symposium: Adaptive User Interface.Google Scholar
  78. Schwab, I., Kobsa, A. & Koychev, I. (2001). Learning User's Interests Through Positive Examples Using Content Analysis and Collaborative Filtering. Submitted.Google Scholar
  79. Shardanand, U. (1994). Social Information Filtering for Music Recommendation. MIT EECS M. Eng. thesis, also TR-94-04. Learning and Common Sense Group. MIT Media Laboratory.Google Scholar
  80. Shardanand, U. & Maes, P. (1995). Social Information Filtering: Algorithms for Automating ‘Word of Mouth’.... In Proceedings of CHI'95, 210–217.Google Scholar
  81. Sheth, B. & Maes, P. (1993). Evolving Agents for Personalitzed Information Filtering. In Proceedings of the Ninth Conferece on Artificial Intelligence for Applications. IEEE Computer Society Press.Google Scholar
  82. Sorensen, H. & McElligot, M. (1995). PSUN: A Profiling System for Usenet News. In CKIM' 95 Workshop on Intelligent Information Agents.Google Scholar
  83. Sorensen, H., Riordan, A. O. & Riordan, C. O. (1997). Profiling with the INFORMER Text Filtering Agent. Journal of Universal Computer Science 3(8): 988–1006.Google Scholar
  84. Stefani, A. & Strappavara, C. (1998). Personalizing Access to Web Wites: The SiteIF Project. In Proceedings of HYPERTEXT'98.Google Scholar
  85. Terveen, L. G. & Hill, W. (2001). Beyond Recommender Systems: Helping People Help Eachother. In Carroll, J. (ed.) HCI in the New Millennium. Addison Wesley.Google Scholar
  86. Webb, G. & Kuzmycz, M. (1996). Feature Based Modelling: A Methodology for Producing Coherent, Consistent, Dynamically Changing Models of Agents' Competencies. User Modelling and User-Adapted Interaction 5: 117–150.Google Scholar
  87. Widmer, G. & Kubat, M. (1996). Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23: 69–101 (Kluwer Academic Publishers).Google Scholar
  88. Yan, T. W. & Garcia-Molina, H. (1995). Sift – a Tool for Wide-Area Information Dissemination. In Proceedings of the 1195 USENIX Technical Conference, 177–186.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Miquel Montaner
    • 1
  • Beatriz López
    • 1
  • Josep Lluís de la Rosa
    • 1
  1. 1.Agents Research Laboratory, Institut d'Informàtica i AplicacionsUniversitat de Girona, Campus MontiliviGironaSpain

Personalised recommendations