Journal of Oceanography

, Volume 58, Issue 5, pp 715–723 | Cite as

Structure of Haida Eddies and Their Transport of Nutrient from Coastal Margins into the NE Pacific Ocean

  • Frank Whitney
  • Marie Robert


Anticyclonic mesoscale eddies form near shore each winter in the Gulf of Alaska. One site near the Queen Charlotte Islands is shown to produce eddies that transport from 3000 to 6000 km3 of coastal water up to 1000 km westward. Eddies carry shelf nutrients either into the high nutrient, low chlorophyll waters of the NE Pacific, or in a more southerly direction into seasonally nitrate depleted waters. A large eddy sampled in summer 1998 was found to have elevated particulate levels on its perimeter. Nitrate supplied to the euphotic zone by this eddy during its natal summer is estimated to be three times greater than the usual seasonal nutrient transport in the Gulf of Alaska.

Anticyclonic eddies NE Pacific nutrients nitrate silicate POC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barwell-Clarke, J. and F. Whitney (1996): Institute of Ocean Sciences nutrient methods and analysis. Can. Tech. Rep. Hydrogr. Ocean Sci., 182,vi + 43pp.Google Scholar
  2. Bishop, J. K. B. (1999): Transmissometer measurements of POC. Deep-Sea Res. I, 46, 353–369.CrossRefGoogle Scholar
  3. Boyd, P. W., D. L. Mugli, D. E. Varela, R. H. Goldblatt, R. Chretien, K. J. Orians and P. J. Harrison (1996): In vitro iron enrichment experiments in the NE subarctic Pacific. Mar. Ecol. Prog. Ser., 136, 179–193.Google Scholar
  4. Boyd, P. W., C. S. Wong, J. Merrill, F. Whitney, J. Snow, P. J. Harrison and J. Gower (1998): Atmospheric iron supply and enchanced vertical carbon flux in the NE subarctic Pacific— is there a connection? Global Biogeochem. Cycles, 12, 429–441.CrossRefGoogle Scholar
  5. Brzezinski, M. A. (1985):The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21, 347–357.CrossRefGoogle Scholar
  6. Crawford, W. R. (2002): Physical characteristics of Haida Eddies. J. Oceanogr., 58, this issue, 703–713.CrossRefGoogle Scholar
  7. Crawford, W. R. and F. A. Whitney (1999): Mesoscale eddy aswirl with data in Gulf of Alaska. EOS, 80, 365, 370.Google Scholar
  8. Crawford, W. R., J. Y. Cherniawsky, M. G. G. Foreman and J.F. R. Gower (2002): Formation of the Haida-1998 oceanic eddy.J. Geophys. Res. (in press).Google Scholar
  9. Falkowski, P. G., D. Ziemann, Z. Kolber and P. K. Bienfang (1991): Role of eddy pumping in enhancing primary productivity in the ocean. Nature, 352, 55–58.CrossRefGoogle Scholar
  10. Franks, P. J. S., J. S. Wroblewski and G. R. Flierl (1986): Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring. J. Geophys. Res., 91, 7603–7610.CrossRefGoogle Scholar
  11. Lohan, M. C., P. J. Statham and D. W. Crawford (2002): Dissolved total zinc in surface waters of the subarctic North East Pacific in summer and winter. Deep-Sea Res. II (in press).Google Scholar
  12. Martin, A. P. and K. J. Richards (2001): Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757–773.CrossRefGoogle Scholar
  13. Martin, J. H., R. M. Gordon, S. Fitzwater and W. W. Brokenow (1989): Vertex: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res., 30, 649–680.CrossRefGoogle Scholar
  14. McGillicuddy, D. J., A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels and A. H. Knap (1998): Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263–266.CrossRefGoogle Scholar
  15. Meyers, S. D. and S. Basu (1999): Eddies in the eastern Gulf of Alaska from TOPEX/POSEIDON altimetry. J. Geophys. Res., 104, 13333–13343.CrossRefGoogle Scholar
  16. Nelson, D. M., H. W. Ducklow, G. L. Hitchcock, M. A. Brzezinski, T. J. Colwes, C. Garside, R. W. Gould, T. M. Joyce, C. Langdon, J. J. McCarthy and C. S. Yentsch (1985): Distribution and composition of biogenic particulate matter in a Gulf Stream warm-core ring. Deep-Sea Res., 32, 1347–1369.CrossRefGoogle Scholar
  17. Nishioka, J., S. Takeda, C. S. Wong and W. K. Johnson (2001): Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. tiMar. Chem., 74, 157–179.Google Scholar
  18. Pingree, R. D. and B. Le Cann (1992): Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the southern Bay of Biscay in 1990. Deep-Sea Res., 39, 1147–1175.CrossRefGoogle Scholar
  19. Rogachev, K. A., P. Y. Tishchenko, G. Y. Pavlova and A. S. Bychkov (1996): The influence of fresh-core rings on chemical concentrations (CO2, PO4, O2, alkalinity, and pH) in the western subarctic Pacific Ocean. J. Geophys. Res., 101, 999–1010.CrossRefGoogle Scholar
  20. Savidge, G. and P. J. le B. Williams (2001): The PRIME 1996 cruise: an overview. Deep-Sea Res. II, 48, 687–704.CrossRefGoogle Scholar
  21. Tabata, S. (1982): The anticyclonic, baroclinic eddy off Sitka, Alaska, in the Northeast Pacific Ocean. J. Phys. Oceanogr., 12, 1260–1282.CrossRefGoogle Scholar
  22. Takeda, S. (1998): Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774–777.CrossRefGoogle Scholar
  23. Thomson, R. E. and J. F. R. Gower (1998): A basin-scale oceanic instability event in the Gulf of Alaska. J. Geophys. Res., 103, 3033–3040.CrossRefGoogle Scholar
  24. Tomosada, A. (1986): Generation and decay of Kuroshio warmStructure of Haida Eddies and Their Transport of Nutrient from Coastal Margins into the NE Pacific Ocean 723 core rings. Deep-Sea Res., 33, 1475–1486.CrossRefGoogle Scholar
  25. Whitney, F. A. and H. J. Freeland (1999): Variability in upperocean properties in the NE Pacific Ocean. Deep-Sea Res.II, 46, 2351–2370.CrossRefGoogle Scholar
  26. Whitney, F. A. and D. W. Welch (2002): Impact of the 1997-8 El Niño and 1999 La Niña on nutrient supply in the Gulf of Alaska. Prog. Oceanogr.(in press).Google Scholar
  27. Whitney, F. A., C. S. Wong and P. W. Boyd (1998): Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser., 170, 15–23.Google Scholar
  28. Wong, C. S. and R. J. Matear (1999): Sporadic silicate limitation of phytoplankton productivity in the subarctic NE Pacific. Deep-Sea Res. II, 46, 2539–2555.CrossRefGoogle Scholar
  29. Wong, C. S., F. A. Whitney, K. Iseki, J. S. Page and J. Zeng (1995): Analysis of trends in primary productivity and chlorophyll-a over two decades at Ocean Station P (50°N, 145°W) in the Subarctic Northeast Pacific Ocean. In Climate Change and Northern Fish Populations, ed. by R. J. Beamish, Can. J. Fish. Aquat. Sci., 121, 107–117.Google Scholar
  30. Wong. C. S., F. A. Whitney, D. Crawford, K. Iseki, R. J. Matear, W. K. Johnson, J. S. Page and D. Timothy (1999): Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicate form time-series sediment traps at Ocean Station P, 1982-1993: relationship to changes in subarctic primary productivity. Deep-Sea Res. II, 46, 2735–2760.CrossRefGoogle Scholar
  31. Woodward, E. M. S. and A. P. Rees(2001): Nutrient distribution in an anticyclonic eddy in the northeast Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep-Sea Res. II, 40, 775–793.CrossRefGoogle Scholar
  32. Yentsch, C. S. and D. A. Phinney (1985): Rotary motions and convection as a means of regulating primary production in warm core rings. J. Geophys. Res., 90, 3237–3248.Google Scholar
  33. Zhang, J. Z., R. Wannikhof and K. Lee (2001): Enhanced new production observed from the diurnal cycle of nitrate in an oligotrophic anticyclonic eddy. Geophys. Res. Lett., 28, 1579–1582.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2002

Authors and Affiliations

  • Frank Whitney
    • 1
  • Marie Robert
    • 1
  1. 1.Institute of Ocean SciencesFisheries and Oceans CanadaSidneyCanada

Personalised recommendations