Neurochemical Research

, Volume 28, Issue 3–4, pp 637–644 | Cite as

Guinea Pigs as a Nontransgenic Model for APP Processing in Vitro and in Vivo

Article

Abstract

Alzheimer's disease (AD) is characterized, amongst others, by the appearance of vascular and parenchymal β-amyloid deposits in brain. Such aggregates are mainly composed of β-amyloid peptides, which are derived by proteolytic processing of a larger amyloid precursor protein (APP). APP is highly conserved among mammalian species, but experimental studies in rodents are often hampered by the humble APP-processing in the amyloidogenic pathway and by the inability of rodent β-amyloid peptides to form higher molecular aggregates such as soluble oligomers and insoluble β-amyloid plaques. Thus, there is need for in vitro and in vivo model systems that allow identification of factors that increase amyloidogenic APP processing and accelerate β-amyloid plaque formation and testing the potency of pharmacological manipulations to ameliorate β-amyloid load in brain. Transgenic mice that overexpress human APP containing AD-associated mutations that favor the amyloidogenic pathway of APP processing represent such a model. However, mutations of the APP gene are not frequent in AD and, therefore, the mechanisms of β-amyloid plaque formation, the composition of β-amyloid plaques, and the accompanying tissue response in brain of these animals may be different from that in AD. In contrast, guinea pigs express β-amyloid peptides of the human sequence and appear to represent a more physiological model to examine the long-term effects of experimental manipulations on APP processing and β-amyloid plaque formation in vivo. Additionally, APP processing in guinea pig primary neuronal cultures has been shown to be similar to cultures of human origin. In this article we highlight the advantages and limitations of using guinea pigs as experimental models to study APP processing.

Alzheimer's disease amyloid precursor protein β-amyloid secretases aging animal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Selkoe, D. J. 1998. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447–453.PubMedGoogle Scholar
  2. 2.
    Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Müller Hill, B. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736.PubMedGoogle Scholar
  3. 3.
    Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A., St. George-Hyslop, P., Van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. 1987. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884.PubMedGoogle Scholar
  4. 4.
    Roßner, S., Ueberham, U., Schliebs, R., Perez-Polo, J. R., and Bigl, V. 1998. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Progr. Neurobiol. 56:541–569.PubMedGoogle Scholar
  5. 5.
    Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. 1992a. Targeting of cell-surface β-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature 357:500–503.PubMedGoogle Scholar
  6. 6.
    Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. 1992b Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.PubMedGoogle Scholar
  7. 7.
    Sisodia, S. S. 1992. β-Amyloid precursor protein cleavage by a membrane bound protease. Proc. Natl. Acad. Sci. USA 89:6075–6079.PubMedGoogle Scholar
  8. 8.
    Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C., and Beyreuther, K. 1989. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57:115–126.PubMedGoogle Scholar
  9. 9.
    Koike, H., Tomioka, S., Sorimachi, H., Saido, T. C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K., and Ishiura, S. 1999. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343:371–375.PubMedGoogle Scholar
  10. 10.
    Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. 1999. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96:3922–3927.PubMedGoogle Scholar
  11. 11.
    Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. 1992. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255: 728–730.PubMedGoogle Scholar
  12. 12.
    Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberburg, I., and Schenk, D. B. 1993. Secretion of amyloid precursor protein cleaved at the amino terminus of the amyloid peptide. Nature 361:260–263.PubMedGoogle Scholar
  13. 13.
    Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., John, V., et al. 1999. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540.PubMedGoogle Scholar
  14. 14.
    Vassar, R., Bennett, B. D., Babu-Khan, S., Khan, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosin-ski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. 1999. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741.PubMedGoogle Scholar
  15. 15.
    Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E. 1999. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature 402:533–537.PubMedGoogle Scholar
  16. 16.
    Esler, W. P., Kimberly, W. T., Ostaszewski, B. L., Diehl, T. S., Moore, C. L., Tsai, J. Y., Rahmati, T., Xia, W., Selkoe, D. J., and Wolfe, M. S. 2000. Transition-state analogue inhibitors of γ-sec-retase bind directly to presenilin-1. Nat. Cell Biol. 2:428–434.PubMedGoogle Scholar
  17. 17.
    Li, Y. M., Xu, M., Lai, M. T., Huang, Q., Castro, J. L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil, J. G., Register, R. B., Sardana, M. K., Shearman, M. S., Smith, A. L., Shi, X. P., Yin, K. C., Shafer, J. A., and Gardell, S. J. 2000. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694.PubMedGoogle Scholar
  18. 18.
    Wolfe, M. S. and Haass, C. 2001. The role of presenilins in γ-secretase activity. J. Biol. Chem. 276:5413–5416.PubMedGoogle Scholar
  19. 19.
    Blessed, G., Tomlinson, B. E., and Roth, M. 1968. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 114:798–811.Google Scholar
  20. 20.
    Roth, M., Tomlinson, B. E., and Blessed, G. 1966. Correlation between scores for dementia and counts of senile plaques in cerebral grey matter of elderly subjects. Nature 209:109–110.PubMedGoogle Scholar
  21. 21.
    Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, G. H., and Perry, R. H. 1978. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2:1457–1459.PubMedGoogle Scholar
  22. 22.
    Cummings, B. J. and Cotman, C. W. 1995. Image-analysis of β-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet 346:1524–1528.PubMedGoogle Scholar
  23. 23.
    Bartoo, G. T., Nochlin, D., Chang, D., Kim, Y., and Sumi, S. M. 1997. The mean Aβ load in the hippocampus correlates with duration and severity of dementia in subgroups of Alzheimer's disease. J. Neuropath. Exp. Neurol. 56:531–540.PubMedGoogle Scholar
  24. 24.
    Cummings, B. J., Head, E., Afagh, A. J., Milgram, N. W., and Cotman, C. W. 1996. β-Amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol. Learning Memory 66:11–23.Google Scholar
  25. 25.
    Dodart, J. C., Meziane, H., Mathis, C., Bales, K. R., Paul, S. M., and Ungerer, A. 1999. Behavioral disturbances in transgenic mice overexpressing the V717F β-amyloid precursor protein. Behav. Neurosci. 113:982–990.PubMedGoogle Scholar
  26. 26.
    Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., DeLong, C. A., Wu, S., Wu, X., Holtzman, D. M., and Paul, S. M. 2002. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5:452–457.PubMedGoogle Scholar
  27. 27.
    Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J. 1999. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155: 853–862.PubMedGoogle Scholar
  28. 28.
    McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. 1999. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46:860–866.PubMedGoogle Scholar
  29. 29.
    Koistinaho, M., Ort, M., Cimadevilla, J. M., Vondrous, R., Cordell, B., Koistinaho, J., Bures, J., and Higgins, L. S. 2001. Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. USA 98:14675–14680.PubMedGoogle Scholar
  30. 30.
    Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. 2002. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.PubMedGoogle Scholar
  31. 31.
    Wang, H. W., Pasternak, J. F., Kuo, H., Ristic, H., Lambert, M. P., Chromy, B., Viola, K. L., Klein, W. L., Stine, W. B., Krafft, G. A., and Trommer, B. L. 2002. Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924:133–140.PubMedGoogle Scholar
  32. 32.
    Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. 1998. Diffusible, nonfibrillar ligands derived from A1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448–6453.PubMedGoogle Scholar
  33. 33.
    Auld, D. S., Kar, S., and Quirion, R. 1998. β-Amyloid peptides as direct cholinergic neuromodulators: A missing link? Trends Neurosci. 21:43–49.PubMedGoogle Scholar
  34. 34.
    Kar, S., Seto, D., Gaudreau, P., and Quirion, R. 1996. β-Amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J. Neurosci. 16:1034–1040.PubMedGoogle Scholar
  35. 35.
    Pedersen, W. A., Kloczewiak, M. A., and Blusztajn, J. K. 1996. Amyloid β protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA 93:8068–8071.PubMedGoogle Scholar
  36. 36.
    Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T., and Imahori, K. 1997. Nontoxic amyloid β peptide (1–42) supresses acetylcholine synthesis: Possible role in cholinergic dysfunction in Alzheimer's disease. J. Biol. Chem. 272:2038–2041.PubMedGoogle Scholar
  37. 37.
    Kelly, J. F., Furukawa, K., Barger, S. W., Rengen, M. R., Mark, R. J., Blanc, E. M., Roth, G S., and Mattson, M. P. 1996. Amyloid β peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93:6753–6758.PubMedGoogle Scholar
  38. 38.
    Mori, H., Takio, K., Ogawara, M., and Selkoe, D. J. 1992. Mass spectrometry of purified amyloid β protein in Alzheimer's disease. J. Biol. Chem. 267:17082–17086.PubMedGoogle Scholar
  39. 39.
    Miller, D. L., Papayannoopoulos, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, K., and Iqbal, K. 1993. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301:41–52.PubMedGoogle Scholar
  40. 40.
    Seubert, P., Vigo-Pelfrey, C., Esch, F., Leal, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., Mc Cormack, R., Wolfert, R., Selkoe, D., Lieberburg, I., and Schenk, D. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327.PubMedGoogle Scholar
  41. 41.
    Suzuki, N., Cheung, T. T., Cai, X.-D. Odaka, A., Otvos, L., Eckman, C., Golde, T. E., and Younkin, S. G. 1994. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717). Science 264: 1336–1340.PubMedGoogle Scholar
  42. 42.
    Jarret, J. T. and Lansbury, P. T. 1993. Seeding "one-dimensional crystallization" of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055–1058.PubMedGoogle Scholar
  43. 43.
    Jarret, J. T., Berger, E. P., and Lansbury, P. T. 1993. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.PubMedGoogle Scholar
  44. 44.
    Shin, R.-W., Ogino, K., Kondo, A., Saido, T. C., Trojanowski, J. Q., Kitamoto, T., and Tateishi, J. 1997. Amyloid β-protein (Aβ) 1–40 but not Aβ1–42 contributes to the experimental formation of Alzheimer's disease amyloid fibrils in rat brain. J. Neurosci. 17:8187–8183.Google Scholar
  45. 45.
    De Strooper, B., Somins, M., Multhaup, G., Van Leuven F., Beyreuther, K., and Dotti, C. G. 1995. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J. 14:4932–4938.PubMedGoogle Scholar
  46. 46.
    Reaume, A. G., Howland, D. S., Trusko, S. P., Savage, M. J., Lang, D. M., Greenberg, B. D., Siman, R., and Scott, R. W. 1996. Enhanced amyloidogenic processing of the β-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer's disease mutations and a "humanized" Aβ sequence. J. Biol. Chem. 271:23380–23388.PubMedGoogle Scholar
  47. 47.
    Dyrks, T., Dyrks, E., Masters, C., and Beyreuther, K. 1993. Amyloidogenicity of rodent and human βA4 sequences. FEBS Lett. 324:231–236.PubMedGoogle Scholar
  48. 48.
    Otvos, L. Jr., Szendrei, G. I., Lee, V. M., and Mantsch, H. H. 1993. Human and rodent Alzheimer β-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur. J. Biochem. 211:249–257.PubMedGoogle Scholar
  49. 49.
    Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagoplan, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527.PubMedGoogle Scholar
  50. 50.
    Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. 1996. Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102.PubMedGoogle Scholar
  51. 51.
    Kammesheidt, A., Boyce, F. M., Spanoyannis, A. F., Cummings, B. J., Ortegon, M., Cotman, C. W., Vaught, J. L., and Neve, R. L. 1992. Amyloid deposition and neuronal pathology in transgenic mice expressing the carboxyterminal fragment of the Alzheimer's amyloid precursor in the brain. Proc. Natl. Acad. Sci. USA 89:10857–10861.PubMedGoogle Scholar
  52. 52.
    Nalbantoglu, J., Tiradosantiago, G., Lahsaini, A., Poirier, J., Goncalves, O., Verge, A., Momoli, F., Welner, S. A., Massicotte, G., Julien, J. P., and Shapiro, M. L. 1997. Impaired learning and LTP in mice expressing the carboxy-terminus of the Alzheimer amyloid precursor protein. Nature 387:500–505.PubMedGoogle Scholar
  53. 53.
    Oster-Granite, M. L., McPhie, D. L., Greenan, J., and Neve, R. L. 1996. Age-dependent neuronal and synaptic degeneration in mice transgenic for C-terminus of the amyloid precursor protein. J. Neurosci. 16:6732–6741.PubMedGoogle Scholar
  54. 54.
    Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P. A., Waridel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94:13287–13292.PubMedGoogle Scholar
  55. 55.
    Johnstone, E. M., Chaney, M. O., Norris, F. H., Pascual, R., and Little, S. P. 1991. Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reactions. Mol. Brain Res. 10:299–305.PubMedGoogle Scholar
  56. 56.
    Beck, M., Müller, D., and Bigl, V. 1997. Amyloid precursor protein in guinea pigs: Complete cDNA sequence and alternative splicing. Biochim. Biophys. Acta 1351:17–21.PubMedGoogle Scholar
  57. 57.
    Beck, M., Brückner, M. K., Holzer, M., Stahl, T., and Bigl, V. 1998. The use of guinea pigs (Cavia sp.) as a model to study processing of the amyloid precursor protein (APP). Eur. J. Neurosci. (Suppl. 10): Abstract 92Google Scholar
  58. 58.
    Beck, M., Brückner, M. K., Holzer, M., Kaap, S., Pannicke, T., Arendt, T., and Bigl, V. 2000. Guinea-pig primary cell cultures provide a model to study expression and amyloidogenic processing of endogenous amyloid precursor protein. Neuroscience 95:243–254.PubMedGoogle Scholar
  59. 59.
    Holzer, M., Brückner, M. K., Beck, M., Bigl, V., and Arendt, T. 2000. Modulation of APP processing and secretion by okadaic acid in primary guinea pig neurons. J. Neural Transm. 107:451–461.PubMedGoogle Scholar
  60. 60.
    Sambamurti, K., Sevlever, D., Koothan, T., Refolo, L. M., Pinnix, I., Gandhi, S., Onstead, L., Younkin, L., Prada, C. M., Yager, D., Ohyagi, Y., Eckman, C. B., Rosenberry, T. L., and Younkin, S. G. 1999. Glycosylphosphatidylinositol-anchored proteins play an important role in the biogenesis of the Alzheimer's amyloid β-protein. J. Biol. Chem. 274:26810–26814.PubMedGoogle Scholar
  61. 61.
    Clarke, N. J., Tomlinson, A. J., Ohyagi, Y., Younkin, S., and Naylor, S. 1998. Detection and quantitation of cellularly derived amyloid β peptides by immunoprecipitation-HPLC-MS. FEBS Lett. 430:419–423.PubMedGoogle Scholar
  62. 62.
    Khorkova, O. E., Patel, K., Heroux, J., and Sahasrabudhe, S. 1998. Modulation of amyloid precursor protein processing by compounds with various mechanisms of action: Detection by liquid phase electrochemiluminescent system. J. Neurosci. Methods 82:159–166.PubMedGoogle Scholar
  63. 63.
    Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J., and Greengard, P. 1990. Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87:6003–6006.PubMedGoogle Scholar
  64. 64.
    Buxbaum, J. D., Koo, E. H., and Greengard, P. 1993. Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide. Proc. Natl. Acad. Sci. USA 90:9195–9198.PubMedGoogle Scholar
  65. 65.
    Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., Ramabhadran, T. V., and Greengard, P. 1992. Protein phosphorylation regulates secretion of Alzheimer β/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89:3055–3059.PubMedGoogle Scholar
  66. 66.
    Jope, R. S. 1996. Cholinergic muscarinic receptor signaling by the phosphoinositide signal transduction system in Alzheimer's disease. Alz. Dis. Rev. 1:2–14.Google Scholar
  67. 67.
    Coughlan, C. M. and Breen, K. C. 2000. Factors influencing the processing and function of the amyloid β precursor protein: A potential therapeutic target in Alzheimer's disease? Pharmacol. Ther. 86:111–144.PubMedGoogle Scholar
  68. 68.
    Roßner, S., Beck, M., Stahl, T., Mendla, K., Schliebs, R., and Bigl, V. 2000. Constitutive overexpression of protein kinase C in guinea pig brain increases α-secretory APP processing without decreasing β-amyloid generation. Eur. J. Neurosci. 12: 3191–3200.PubMedGoogle Scholar
  69. 69.
    Roßner, S., Mendla, K, Schliebs, R., and Bigl, V. 2001. Protein kinase Cα and β1 isoforms are regulators of α-secretory proteolytic processing of amyloid precursor protein in vivo. Eur. J. Neurosci 13:1644–1648.PubMedGoogle Scholar
  70. 70.
    Dyrks, T., Mönning, U., Beyreuther, K., and Turner, J. 1994. Amyloid precursor protein secretion and β A4 amyloid generation are not mutually exclusive. FEBS Lett. 349:210–214.PubMedGoogle Scholar
  71. 71.
    Fuller, S. J., Storey, E., Li, Q.-X., Smith, I., Beyreuther, K., and Masters, C. 1995. Intracellular production of βA4 amyloid of Alzheimer's disease: Modulation by phosphoramidon and lack of of coupling to secretion of the amyloid precursor protein. Biochemistry 34:8091–8098.PubMedGoogle Scholar
  72. 72.
    LeBlanc, A. C., Koutroumanis, M., and Goodyer, C. G. 1998. Protein kinase C activation increases release of secretd amyloid precursor protein without decreasing Aβ production in human primary neuron cultures. J. Neurosci. 18:2907–2913.PubMedGoogle Scholar
  73. 73.
    Robert, S. J., Zugaza, J. L., Fischmeister, R., Gardier, A. M., and Lezoualc'h, F. 2001. The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 276:44881–44888.PubMedGoogle Scholar
  74. 74.
    Stephenson, D. T. and Clemens, J. A. 1998. Metabotropic glutamate receptor activation in vivo induces intraneuronal amyloid immunoreactivity in guinea pig hippocampus. Neurochem. Int. 33:83–93.PubMedGoogle Scholar
  75. 75.
    Beach, T. G., Kuo, Y. M., Schwab, C., Walker, D. G., and Roher, A. E. 2001. Reduction of cortical amyloid β levels in guinea pig brain after systemic administration of physostigmine. Neurosci. Lett. 310:21–24.PubMedGoogle Scholar
  76. 76.
    Petanceska, S. S., Nagy, V., Frail, D., and Gandy, S. 2000. Ovariectomy and 17β-estradiol modulate the levels of Alzheimer's amyloid beta peptides in brain. Neurology 54:2212–2217.PubMedGoogle Scholar
  77. 77.
    Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T. 2001. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:5856–5861.PubMedGoogle Scholar
  78. 78.
    Calingasan, N. Y., Park, L. C., Gandy, S. E., and Gibson, G. E. 1998. Disturbances of the blood-brain barrier without expression of amyloid precursor protein-containing neuritic clusters or neuronal loss during late stages of thiamine deficiency in guinea pigs. Dev. Neurosci. 20:454–461.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Paul Flechsig Institute for Brain Research, Department of NeurochemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations