The Origin of Lactation as a Water Source for Parchment-Shelled Eggs

  • Olav T. Oftedal

Abstract

Available evidence indicates that mammary gland secretions first evolved in synapsids that laid parchment-shelled eggs. Unlike the rigid-shelled eggs of birds and some other sauropsids, parchment-shelled eggs lose water very rapidly when exposed to ambient air of lower vapor pressure, whether due to differences in relative humidity or to differences in temperature. This precludes endothermic incubation of parchment-shelled eggs in an open nest. Synapsids may have avoided egg desiccation by incubating eggs in a pouch, but this would limit maternal activity. Parchment-shelled eggs are able to take up liquid water across the eggshell. I propose that mammary secretion originally evolved as a means of supplying water to eggs, and as such was essential to the evolution of endothermy among the egg-laying cynodonts that were ancestral to mammals. It is possible that synapsid eggs, like parchment-shelled squamate eggs, were also capable of uptake of some nutrients, such as sodium and ionic calcium. Living monotremes still produce parchment-shelled eggs. The porous eggshell and bilaminar yolk sac membrane of these eggs permit substantial uptake of uterine secretions during the intrauterine period, and might also facilitate uptake of mammary secretions during egg incubation. In its simplest form, mammary secretion may be an ancient trait of egg-laying synapsids, having had an important role long before milk became obligatory for suckling young.

lactation egg physiology water balance endothermy evolution monotreme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. P. Luckett (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. In M. K. Hecht, P. C. Goody, and B. M. Hecht (eds.), Major Patterns in Vertebrate Evolution, Plenum, New York, pp. 439–516.Google Scholar
  2. 2.
    D. G. Blackburn, V. Hayssen, and C. J. Murphy (1989). The origin of lactation and the evolution of milk: A review with new hypotheses. Mammal Rev. 19: 1–26.Google Scholar
  3. 3.
    O. T. Oftedal (2002). The mammary gland and its origin during synapsid evolution. J.Mammary Gland Biol.Neoplasia 7: 225–252.PubMedGoogle Scholar
  4. 4.
    C. A. Long (1969). The origin and evolution of mammary glands. Bioscience 19: 519–523.Google Scholar
  5. 5.
    E. Bresslau (1920). The Mammary Apparatus of the Mammalia in Light of Ontogenesis and Phylogenesis. Methuen &Co, London.Google Scholar
  6. 6.
    W. K. Gregory (1910). The orders of mammals. Bull.Am.Mus.Nat.Hist. 27: 1–524.Google Scholar
  7. 7.
    J. B. S. Haldane (1965). The possible evolution of lactation. Zool.Jb.Syst.92: 41–48.Google Scholar
  8. 8.
    B. M. Graves and D. Duvall (1983). A role of aggregation pheromones in the evolution of mammallike reptile lactation. Am.Nat.122: 835–839.Google Scholar
  9. 9.
    W. E. Duellman and L. Trueb (1994). Biology of Amphibians, Johns Hopkins University Press, Baltimore, MD.Google Scholar
  10. 10.
    M. J. Packard and R. S. Seymour (1997). Evolution of the amniote egg. In S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Academic Press, San Diego, CA, pp. 265–290.Google Scholar
  11. 11.
    J. R. Stewart (1997). Morphology and evolution of the egg of oviparous amniotes. In S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Academic Press, San Diego, CA, pp. 291–326.Google Scholar
  12. 12.
    J. P. Hill (1933). The development of the Monotremata. Part II. The structure of the eggshell. Trans.Zool.Soc.Lond.21: 443–477.Google Scholar
  13. 13.
    R. L. Hughes (1993). Monotreme development with particular reference to the extraembryonic membranes. J.Exp.Zool. 266: 480–494.PubMedGoogle Scholar
  14. 14.
    K. F. Hirsch (1994). The fossil record of vertebrate eggs. In S. Donovan (ed.), The Paleobiology of Trace Fossils, Wiley, London, pp. 269–294.Google Scholar
  15. 15.
    K. Carpenter, K. F. Hirsch, and J. R. Horner (eds.) (1994). Dinosaur Eggs and Babies, Cambridge University Press, Cambridge, England.Google Scholar
  16. 16.
    K. F. Hirsch and D. K. Zelenitsky (1997). Dinosaur eggs. In J. O. Farlow and M. K. Brett-Surman (eds.), The Complete Dinosaur, Indiana University Press, Bloomington, IN, pp. 394–402.Google Scholar
  17. 17.
    A. S. Romer and L. W. E. Price (1940). Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap.28: 1–538.Google Scholar
  18. 18.
    A. S. Romer (1957). Origin of the amniote egg. Sci. Mon.85: 57–63.Google Scholar
  19. 19.
    K. F. Hirsch (1986). Not every “egg” is an egg. J. Vert. Paleontol.6: 200–201.Google Scholar
  20. 20.
    R. L. Hughes (1977). Egg membranes and ovarian function during pregnancy in monotremes and marsupials. In J. H. Calaby and C. H. Tyndale-Biscoe (eds.), Reproduction and Evolution.Proceedings of the Fourth Symposium on Comparative Biology of Reproduction, held in Canberra, December 1976, Austalian Academy of Science, Canberra City, Australia, pp. 281–291.Google Scholar
  21. 21.
    M. Griffiths (1978). Biology of the Monotremes, Academic Press, New York.Google Scholar
  22. 22.
    G. C. Packard and M. J. Packard (1988). The physiological ecology of reptilian eggs and embryos. In C. Gans and R. B. Huey (eds.), Biology of the Reptilia: Vol.16 B.Defense and Life History, Alan R. Liss, New York, pp. 523–605.Google Scholar
  23. 23.
    A. Ar (1991). Roles of water in eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 229–243.Google Scholar
  24. 24.
    D. C. Deeming and M. B. Thompson (1991). Gas exchange across reptilian eggshells. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 277–284.Google Scholar
  25. 25.
    R. A. Ackerman, R. Dmi'el, and A. Ar (1985). Energy and water vapor exchange by parchment-shelled reptile eggs. Physiol. Zool. 58: 129–137.Google Scholar
  26. 26.
    S. C. Manolis, G. J. W. Webb, and K. E. Dempsey (1987). Crocodile egg chemistry. In G. J. W. Webb, S. C. Manolis, and P. J. Whitehead (eds.), Wildlife Management: Crocodiles and Alligators, Surrey Beatty, Sydney, Australia, pp. 445–472.Google Scholar
  27. 27.
    P. R. Sotherland and H. Rahn (1987). On the composition of bird eggs. The Condor89: 48–65.Google Scholar
  28. 28.
    L. J. Vitt (1978). Caloric content of lizard and snake (Reptilia) eggs and bodies and the conversion of weight to caloric data. J. Herpet. 12: 65–72.Google Scholar
  29. 29.
    C. Carey (1986). Tolerance of variation in eggshell conductance, water loss, and water content by red-winged blackbird embryos. Physiol. Zool. 59: 109–122.Google Scholar
  30. 30.
    C. R. Tracy and H. L. Snell (1985). Interrelations among water and energy relations of reptilian eggs, embryos and hatchlings. Am. Zool. 25: 999–1008.Google Scholar
  31. 31.
    G. F. Birchard and D. Marcellini (1996). Incubation time in reptilian eggs. J.Zool., Lond. 240: 621–635.Google Scholar
  32. 32.
    C. V. Paganelli (1991). The avian eggshell as a mediating barrier: Respiratory gas fluxes and pressures during development. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 261–275.Google Scholar
  33. 33.
    M. J. Packard, G. C. Packard, and T. J. Boardman (1982). Structure of eggshells and water relations of reptilian eggs. Herpeto-logica 38: 136–155.Google Scholar
  34. 34.
    G. C. Packard (1991). The physiological and ecological importance of water to embryos of oviparous reptiles. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 213–228.Google Scholar
  35. 35.
    G. C. Packard (1999). Water relations of chelonian eggs and embryos: Is wetter better? Am.Zool. 39: 289–303.Google Scholar
  36. 36.
    D. H. Erwin (1993). The Great Paleozoic Crisis: Life and Death in the Permian, Columbian University Press, New York.Google Scholar
  37. 37.
    M. J. Benton (1997). Vertebrate Paleontology, 2nd edn., Chapman & Hall, London.Google Scholar
  38. 38.
    J. B. Iverson and M. A. Ewert (1991). Physical characteristics of reptilian eggs and a comparison with avian eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 87–100.Google Scholar
  39. 39.
    I. H. M. Smart (1991). Egg-shape in birds. In D. C. Deeming and M. W. F. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 101–116.Google Scholar
  40. 40.
    W. P. Coombs (1989). Modern analogs for dinosaur nesting and parental behavior. In J. O. Farlow (ed.), Paleobiology of the Di-nosaurs, Special Paper 238, The Geological Society of America, Boulder, CO, pp. 21–53.Google Scholar
  41. 41.
    R. A. Ackerman (1991). Physical factors affecting the water exchange of buried reptile eggs. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 193–211.Google Scholar
  42. 42.
    P. J. Kramer and J. S. Boyer (1995). Water Relations of Plants and Soils, Academic Press, San Diego, CA.Google Scholar
  43. 43.
    A. Muth (1981). Water relations of desert iguana (Dipsosaurus dorsalis) eggs. Physiol.Zool.54: 441–451.Google Scholar
  44. 44.
    D. Vleck (1991). Water economy and solute regulation of reptilian and avian embryos. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 245–259.Google Scholar
  45. 45.
    P. R. Sotherland, M. D. Ashen, R. D. Shuman, and C. R. Tracy (1984). The water balance of bird eggs incubated in water. Physiol.Zool. 57: 338–348.Google Scholar
  46. 46.
    M.B. Thompson (1987). Water exchange in reptilian eggs. Physiol.Zool. 60: 1–8.Google Scholar
  47. 47.
    C. P. Black, G. F. Birchard, G. W. Schuett, and V. D. Black (1984). Influence of incubation substrate water content on oxygen uptake in embryos of the Burmese python (Python molu-rus). In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 137–145.Google Scholar
  48. 48.
    L. H. S. Van Mierop and S. M. Barnard (1978). Further observations on thermoregulation in the brooding female Python molurus bivittatus (Serpentes: Bopidae). Copeia 1978: 615–621.Google Scholar
  49. 49.
    P. Michaelson (2002). Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian-Triassic boundary, northern Bowen Basin, Australia. Palaeogeogr.Palaeoclimatol.Palaeoecol. 179: 173–188.Google Scholar
  50. 50.
    D. C. Deeming and M. W. J. Ferguson (1991). Physiological effects of incubation temperature on embryonic development in reptiles and birds. In D. C. Deeming and M. W. J. Ferguson (eds.), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, Cambridge University Press, Cambridge, England, pp. 147–171.Google Scholar
  51. 51.
    P. Harlow and G. Grigg (1984). Shivering thermogenesis in a brooding diamond python, Python spilotes spilotes. Copeia 1984: 959–965.Google Scholar
  52. 52.
    M. H. Schweizer and C. L. Marshall (2001). Amolecular model for the evolution of endothermy in the theropod-bird lineage. J.Exp.Zool.(Mol.Dev.Evol.) 291: 317–338.Google Scholar
  53. 53.
    A. Ar and H. Rahn (1980). Water in the avian egg: Overall budget of incubation. Am.Zool. 20: 373–384.Google Scholar
  54. 54.
    C. Carey, S. D. Garber, E. L. Thompson, and F. C. James (1983). Avian reproduction over an altitudinal gradient. II. Physical characteristics and water loss of eggs. Physiol.Zool.56: 340–342.Google Scholar
  55. 55.
    Z. Arad, I. Gavrieli-levin, and J. Marder (1988). Adaptation of the pigeon egg to incubation in dry, hot environments. Physiol.Zool.61: 293–300.Google Scholar
  56. 56.
    C. Carey, F. Leon-Velarde, O. Dunin-Borkowskit, and C. Monge (1989). Shell conductance, daily water loss, and water content of Puna teal eggs. Physiol.Zool.62: 83–95.Google Scholar
  57. 57.
    D. T. Booth and H. Rahn (1990). Factors modifying rate of water loss from birds’ eggs during incubation. Physiol.Zool.63: 697–709.Google Scholar
  58. 58.
    D. T. Booth and P. R. Sotherland (1991). Oxygen consumption, air-cell gas tensions, and incubation parameters of mute swan eggs. Physiol.Zool.64: 473–484.Google Scholar
  59. 59.
    W. J. Hillenius (1992). The evolution of mammalian turbinates and mammalian endothermy. Paleobiology 18: 17–29.Google Scholar
  60. 60.
    W. J. Hillenius (1994). Turbinates in therapsids: Evidence for late Permian origins of mammalian endothermy. Evolution 48: 207–229.Google Scholar
  61. 61.
    A. de Ricqles (1974). Evolution of endothermy. Evol.Theor.1: 51–80.Google Scholar
  62. 62.
    A. Chinsamy and B. S. Rubidge (1993). Dicynodont (Therap-sida) bone histology: Phylogenetic and physiological implica-tions. Palaeontol.Afr.30: 97–102.Google Scholar
  63. 63.
    J. Botha and A. Chinsamy (2000). Growth patterns deduced from the bone histology of the cynodonts Diademodon and Cynognathus. J.Vert.Paleontol. 20: 705–711.Google Scholar
  64. 64.
    T. S. Kemp (1982). Mammal-like Reptiles and the Origin of Mammals, Academic Press, London.Google Scholar
  65. 65.
    W. Maier, J. van den Heever, and F. Durand (1996). New therapsid specimens and the origin of the secondary hard and soft palate of mammals. J.Zool.Syst.Evol.Res. 34: 9–19.Google Scholar
  66. 66.
    R. W. Blob (2001). Evolution of hindlimb posture in non-mammalian therapsids: Biomechanical tests of paleontological hypotheses. Paleobiology 27: 14–38.Google Scholar
  67. 67.
    J. Ruben (1995). The evolution of endothermy in mammals and birds: From physiology to fossils. Ann.Rev.Physiol.57: 69–95.Google Scholar
  68. 68.
    G. H. Groenewald, J. Welman, and J. A. MacEachern (2001). Vertebrate burrow complexes from the early Tri-asic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios 16: 148–160.Google Scholar
  69. 69.
    F. G. Benedict (1932). The Physiology of Large Reptiles With Special Reference to the Heat Production of Snakes, Tor-toises, Lizards and Alligators, Carnegie Institute of Washington, Washington, DC.Google Scholar
  70. 70.
    L. H. S. Van Mierop and S. M. Barnard (1976). Thermoregulation in a brooding female Python molurus bivittata (Serpentes: Boidae). Copeia 1976: 398–401.Google Scholar
  71. 71.
    D. Randall, B. Gannon, S. Runciman, and R. V. Baudinette (1984). Gas transfer by the neonate in the pouch of the tammar wallaby, Macropus eugenii. In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 423–436.Google Scholar
  72. 72.
    H. Burrell (1974). The Platypus, Rigby, Adelaide, Australia. (Originally published in 1927)Google Scholar
  73. 73.
    M. J. Novacek, G. W. Rougier, J. R. Wible, M. C. McKenna, D. Dashzeveg, and I. Horovitz (1997). Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature 389: 483–486.PubMedGoogle Scholar
  74. 74.
    Q. Ji, Z.-X. Luo, C.-X. Yuan, J. R. Wible, J.-P. Zhang, and J. A. Georgi (2002). The earliest known eutherian mammal. Nature 416: 816–822.PubMedGoogle Scholar
  75. 75.
    C. Darwin (1872). On the Origin of Species by Means of Natural Selection, 6th edn., Appleton-Century-Crofts, New York.Google Scholar
  76. 76.
    J. A. Lillegraven (1979). Reproduction in Mesozoic mammals. In J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens (eds.), Mesozoic Mammals: The First Two-Thirds of Mam-malian History, University of California Press, Berkeley, CA, pp. 259–276.Google Scholar
  77. 77.
    H. Tyndale-Biscoe and M. Renfree (1987). Reproductive Physiology of Marsupials, Cambridge University Press, Cambridge, UK.Google Scholar
  78. 78.
    T. D. White (1989). An analysis of epipubic bone function in mammals using scaling theory. J. Theor. Biol. 138: 343–357.Google Scholar
  79. 79.
    T. L. Taigen, F. H. Pough, and M. M. Stewart (1984). Water balance of terrestrial anuran (Eleutherodactylus coqui) eggs: Importance of parental care. Ecology65: 248–255.Google Scholar
  80. 80.
    Y. Handrich (1989). Incubation water loss in king penguin egg. I. Change in egg and brood pouch parameters. Physiol. Zool. 62: 96–118.Google Scholar
  81. 81.
    Y. Handrich (1989). Incubation water loss in king penguin egg. II. Does the brood patch interfere with eggshell conductance? Physiol. Zool.62: 119–132.Google Scholar
  82. 82.
    J. R. Stewart and M. B. Thompson (2000). Evolution of placentation among squamate reptiles: Recent research and future directions. Comp. Biochem. Physiol. A127: 411–431.Google Scholar
  83. 83.
    C. P. Qualls (1996). Influence of evolution of viviparity on eggshell morphology in the lizard Lerista bougainvillii. J. Mor-phol. 226: 119–125.Google Scholar
  84. 84.
    M. J. Packard and N. B. Clark (1996). Aspects of calcium regulation in embryonic lepidosaurians and chelonians and a review of calcium regulation in embryonic archosaurians. Physiol. Zool.69: 435–466.Google Scholar
  85. 85.
    B. E. Dunn and T. P. Fitzharris (1987). Endocytosis in the embryonic chick chorionic epithelium. J. Exp. Zool.(Suppl. 1) 1: 75–79.Google Scholar
  86. 86.
    M. B. Thompson, B. K. Speake, K. J. Russell, and R. J. McCartney (2001). Utilization of lipids, proteins, ions and energy during embryonic development of Australian oviparous skinks in the genus Lampropholis. Comp. Biochem. Physiol. A129: 313–326.Google Scholar
  87. 87.
    A. L. Romanoff (1967). Biochemistry of the Avian Embryo, Wiley, New York.Google Scholar
  88. 88.
    L. H. Hoffman (1970). Placentation in the garter snake, Thamnophis sirtalis. J. Morphol. 131: 57–88.Google Scholar
  89. 89.
    J. R. Stewart (1993). Yolk sac placentation in reptiles: Structural innovation in a fundamental vertebrate fetal nutritional system. J. Exp. Zool. 266: 431–449.Google Scholar
  90. 90.
    A. D. Phillott and C. J. Parmenter (2001). Influence of diminished respiratory surface area on survival of sea turtle embryos. J.Exp.Zool.289: 317–321.PubMedGoogle Scholar
  91. 91.
    G. F. Birchard and C. L. Reiber (1993). A comparison of avian and reptilian chorioallantoic vascular density. J.Exp.Biol. 178: 245–249.Google Scholar
  92. 92.
    R. Swain and S. M. Jones (1997). Maternal-fetal transfer of 3H-labelled leucine in the viviparous lizard Niveoscincus metallicus (Scincidae: Lygosominae). J.Exp.Zool. 277: 139–145.Google Scholar
  93. 93.
    T. T. Flynn and J. P. Hill (1947). The development of the Monotremata. Part VI. The later stages of cleavage and the formation of the primary germ layers. Trans. Zool. Soc. Lond. 26: 1–151.Google Scholar
  94. 94.
    R. L. Hughes (1984). Structural adaptations of the eggs and fetal membranes of monotremes and marsupials for respiratory and metabolic exchange. In R. S. Seymour (ed.), Respiration and Metabolism of Embryonic Vertebrates, W. Junk, Dordrecht, The Netherlands, pp. 389–421.Google Scholar
  95. 95.
    M. Griffiths, D. L. McIntosh, and R. E. A. Coles (1969). The mammary gland of the echidna, Tachyglossus aculeatus, with observations on the incubation of the egg and on the newly-hatched young. J.Zool., Lond. 158: 371–386.Google Scholar
  96. 96.
    R. Joseph and M. Griffiths (1992). Whey proteins in early and late milks of monotremes (Monotremata: Tachyglossidae, Ornithorhynchidae) and of the tammar wallaby (Macropus eugenii, Marsupialia: Macropodidae). Aust.Mammal 15: 125–127.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Olav T. Oftedal
    • 1
  1. 1.Department of Conservation BiologyConservation and Research Center, Smithsonian National Zoological ParkWashington, District of Columbia

Personalised recommendations