Biotechnology Letters

, Volume 25, Issue 7, pp 553–558 | Cite as

Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure

Article

Abstract

The α-amino group of the carbohydrate-binding module (CBM) from Phanerochaete chrysosporium cellulase Cel7D was covalently labelled with fluorescein isothiocyanate. The fluorescein-labelled CBM was characterised regarding substrate binding, showing specificity only to cellulose and not to mannan and xylan. Conjugation of fluorescein isothiocyanate to CBM did not affect its binding to cellulose. The labelled CBM was successfully used as a probe for detecting cellulose in lignocellulose material such as never dried spruce and birch wood as well as pulp fibres.

carbohydrate-binding module cellulase fluorescence Phanerochaete chrysosporium pulp fibres 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albinsson B, Li S, Lundquist K, Stromberg R (1999) The origin of lignin fluorescence. J. Mol. Struct. 508: 19–27.Google Scholar
  2. Blanchette RA, Abad AR, Cease KR, Lovrien RE, Leathers TD (1989) Colloidal gold cytochemistry of endo-1,4-β-glucanase, 1,4-β-D-glucan cellobiohydrolase, and endo-1,4-β-xylanase: ultrastructure of sound and decayed birch wood. Appl. Env. Microbiol. 55: 2293–2301.Google Scholar
  3. Din N, Gilkes NR, Tekant B, Miller J, Robert C, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio-Technology 9: 1096–1099.Google Scholar
  4. Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem. 272: 24016–24023.Google Scholar
  5. Johansson G, Ståhlberg J, Lindeberg G, Engström Å, Pettersson G (1989) Isolated fungal cellulase terminal domains and a synthetic minimum analogue bind to cellulose. FEBS Lett. 243: 389–393.Google Scholar
  6. Kim YS, Goodell B, Jellison J (1991) Immuno-electron microscopic localization of extracellular metabolites in spruce wood decayed by brown-rot fungus Postia placenta. Holzf. 45: 389–393.Google Scholar
  7. Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the threedimensional solution structure of the C-terminal domain of cellobiohydrolase I from trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28: 7241–7257.Google Scholar
  8. Lehtiö J (2001) Functional studies and engineering of family 1 carbohydrate-binding modules. Ph.D. Thesis. Stockholm, Sweden: Royal Institute of Technology.Google Scholar
  9. Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995a) The difference in affinity between two fungal cellulosebinding domains is dominated by a single amino acid substitution. FEBS Lett. 372: 96–98.Google Scholar
  10. Linder M, Mattinen M-L, Kontteli M, Lindeberg G, Ståhlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995b) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci. 4: 1056–1064.Google Scholar
  11. Linder M, Nevanen T, Söderholm L, Bengs O, Teeri TT (1998) Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol. Bioeng. 60: 642–647.Google Scholar
  12. Linder M, Nevanen T, Teeri TT (1999) Design of a pH-dependent cellulose-binding domain. FEBS Lett. 447: 13–16.Google Scholar
  13. Ohkuma S (1989) Use of fluorescein isothiocyanate-dextran to measure proton pumping in lysosomes and related organelles. Meth. Enzymol. 174: 131–154.Google Scholar
  14. Panshin AJ, de Zeeuw C (1980) Textbook of Wood Technology, 4th edn. New York: McGraw-Hill Book Company.Google Scholar
  15. Sell J, Zimmermann T (1993) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension loaded spruce and white fir. Holz Roh. Werkst. 51: 384–384.Google Scholar
  16. Sims P, James C, Broda P (1988) The identification, molecular cloning and characterisation of a gene from Phanerochaete chrysosporium that shows strong homology to the exo-cellobiohydrolase I gene from Trichoderma reesei. Gene 74: 411–422.Google Scholar
  17. Sjöström E (1981) Wood Chemistry, Fundamentals and Applications. New York, London, Toronto, Sydney, San Francisco: Academic Press.Google Scholar
  18. Taylor JG, Haigler CH, Kilburn DG, Blanton RL (1996) Detection of cellulose with improved specificity using laser-based instruments. Biotech. Histochem. 71: 215–223.Google Scholar
  19. Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RAJ, Kilburn DG (1998) Characterization and affinity applications of cellulose-binding domains. J. Chromatogr. B 715: 283–296.Google Scholar
  20. Tomme P, Van Tilbeurg H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414, analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170: 575–581.Google Scholar
  21. Väljamäe P, Pettersson G, Johansson G (2001) Mechanism of substrate inhibition in cellulose synergistic degradation. Eur. J. Biochem. 268: 4520–4526.Google Scholar
  22. Vian B, Brillouet J-M, Satiat-Jeunemaitre B (1983) Ultrastructural visualization of xylans in cell walls of hardwood by means of xylanase-gold complex. Biol. Cell. 49: 179–182.Google Scholar
  23. Wood PJ (1980) Specificity in the interactions of direct dyes with polysaccharides. Carbohyd. Res. 85: 271–287.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Lars Hildén
    • 1
    • 2
  • Geoffrey Daniel
    • 1
  • Gunnar Johansson
    • 2
  1. 1.WURC, Department of Wood ScienceSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of BiochemistryUppsala University, BMCUppsalaSweden

Personalised recommendations