Advertisement

Czechoslovak Journal of Physics

, Volume 50, Issue 8, pp 893–924 | Cite as

Dynamics of domain magnetization and the Barkhausen effect

  • D. C. Jiles
Reviews

Abstract

This paper provides a review of the underlying theory of the Barkhausen effect in magnetic materials. The paper contains throughout many of the equations that are commonly used in the mathematical description of this phenomenon. A new contribution in this paper is the examination of how Barkhausen effect can be described in the presence of hysteresis using a hysteretic-stochastic process model. Although the Barkhausen effect has been known for many years its quantitative description has been rather slow in emerging. One reason for this is that as a result of its random nature the experimental observations are not completely reproducible and this means that the description is necessarily complicated by this fact. Nevertheless a mathematical description is possible and the Barkhausen effect does contain useful information about the details of the magnetization processes occuring on a microscopic scale, both from domain wall motion and domain rotation. This information can only be utilized in conjunction with a model description that can be used to interpret the results. The domain wall motion can be described in terms of two limiting models — flexible domain wall motion and rigid domain wall motion. Both give reasonably tractable mathematical solutions, and each has reversible and irreversible components. Domain rotation also has two limiting models — reversible and irreversible rotation, depending on the anisotropy and the magnitude of the angle of rotation. After having discussed the underlying physical description of the main mechanisms the paper proceeds to describe stochastic process models for Barkhausen effect, in particular recent work by Bertotti et al. It is then shown how the stochastic model can be generalized to include the effects of hysteresis. Finally the paper discusses measurement of the Barkhausen effect and how this can be used for the evaluation of stress and microstructure at the surface of a magnetic material.

Keywords

Domain Wall Magnetization Curve Domain Magnetization Easy Axis Anisotropy Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Barkhausen: Phys. Z.20 (1919) 401.Google Scholar
  2. [2]
    K. Stierstadt:Der Magnetische Barkhausen-effekt (The Magnetic Barkhausen Effect), Springer Tracts in Modern Physics, Vol. 40, Springer, Berlin, 1966, p. 1.Google Scholar
  3. [3]
    G.A. Matzkanin, R.E. Beissner, and C.M. Teller:The Barkhausen effect and its Applications to Non Destructive Evaluation, NTIAC Report No. 79-2, Southwest Research Institute, San Antonio (Texas), 1979.Google Scholar
  4. [4]
    M.J. Sablik and B. Augustyniak: inEncyclopedia of Electrical and Electronics Engineering, Vol. 12 (Ed. J.G. Webster), John Wiley and Sons, New York, 1999.Google Scholar
  5. [5]
    W.A. Theiner, I. Altpeter, and R. Kern: inNondestructive Characterization of Materials II (Ed. J.F. Bussiere), Plenum Press, New York, 1986.Google Scholar
  6. [6]
    L. Clapham, T.W. Krause, H. Olsen, B. Ma, D.L. Atherton, P. Clark, and T.M. Holden: Nondestructive Testing and Evaluation Int.28 (1995) 73.Google Scholar
  7. [7]
    L.J. Swartzendruber and G.E. Hicho: in Proc. 11th Conf. on Properties and Applications of Magnetic Materials, Chicago, May 1992.Google Scholar
  8. [8]
    G. Bertotti: Phys.Rev. B39 (1989) 6737.CrossRefADSGoogle Scholar
  9. [9]
    B. Alessandro et al.: J. Appl. Phys.68 (1990) 2901; 2908.CrossRefADSGoogle Scholar
  10. [10]
    S. Zapperi, P. Cizeau, G. Durin, and H.E. Stanley: Phys. Rev. B58 (1998) 6353.CrossRefADSGoogle Scholar
  11. [11]
    D.C. Jiles, L.B. Sipahi, and G. Williams: J. Appl. Phys.73 1993 5830.CrossRefADSGoogle Scholar
  12. [12]
    D.C. Jiles and L. Suominen: IEEE Trans. Mag.30 (1994) 4924.CrossRefGoogle Scholar
  13. [13]
    A. Mitra, L.B. Sipahi, M.R. Govindaraju, and D.C. Jiles: J. Mag. Mag. Mater.153 (1995) 231.CrossRefGoogle Scholar
  14. [14]
    S. Chikazumi:Physics of Magnetism, John Wiley and Sons, New York, 1964.Google Scholar
  15. [15]
    D.C. Jiles:Introduction to the Electronic Properties of Materials, Chapman and Hall, London, 1994.Google Scholar
  16. [16]
    D.C. Jiles:Introduction to Magnetism and Magnetic Materials (2nd ed.), Chapman and Hall, London, 1998.Google Scholar
  17. [17]
    E.C. Stoner and E.P. Wohlfarth: Philos. Trans. Roy. Soc. A240 (1948) 599.CrossRefADSGoogle Scholar
  18. [18]
    R. Becker: Phys. Z.33 (1932) 905.zbMATHGoogle Scholar
  19. [19]
    M. Kersten:Underlying Theory of Ferromagnetic Hysteresis and Coercivity, Hirzel, Leipzig, 1943.Google Scholar
  20. [20]
    R. Becker and W. Döring:Ferromagnetismus, Springer-Verlag, Berlin, 1939.zbMATHGoogle Scholar
  21. [21]
    L. Neel: Ann. Univ. Grenoble22 (1946) 299.MathSciNetGoogle Scholar
  22. [22]
    A. Seeger, H. Kronmuller, H. Rieger, and H. Trauble: J. Appl. Phys.35 (1964) 740.CrossRefADSGoogle Scholar
  23. [23]
    H. Kronmuller and H.R. Hilzinger: Int. J. Mag.5 (1973) 27.Google Scholar
  24. [24]
    H.R. Hilzinger and H. Kronmuller: Physica86 (1977) 1365.Google Scholar
  25. [25]
    H.R. Hilzinger and H. Kronmuller: J. Mag. Mag. Mater.2 (1976) 11.CrossRefADSGoogle Scholar
  26. [26]
    G. Bertotti: J. Appl. Phys.54 (1983) 5293.CrossRefADSGoogle Scholar
  27. [27]
    G. Bertotti: J. Mag. Mag. Mater.41 (1984) 253.CrossRefADSGoogle Scholar
  28. [28]
    G. Bertotti: J. Mag. Mag. Mater.54 (1986) 1556.CrossRefADSGoogle Scholar
  29. [29]
    G. Bertotti: IEEE Trans. Mag.24 (1988) 621.CrossRefGoogle Scholar
  30. [30]
    A. Papoulis:Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.zbMATHGoogle Scholar
  31. [31]
    R. Vergne, J. Cotillard, and J.L. Porteseil: Revue de Physique Appliquee16 (1981) 449.CrossRefGoogle Scholar
  32. [32]
    D.C. Jiles and D.L. Atherton: J. Mag. Mag. Mater.61 (1986) 48.CrossRefADSGoogle Scholar
  33. [33]
    L.J. Swartzendruber, L.H. Bennett, H. Ettedgui, and I. Aviram: J. Appl. Phys.67 (1990) 5469.CrossRefADSGoogle Scholar
  34. [34]
    A. Mitra and D.C. Jiles: IEEE Trans. Mag.31 (1995) 4020.CrossRefGoogle Scholar
  35. [35]
    I.D. Mayergoyz:Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991.zbMATHGoogle Scholar
  36. [36]
    A. Mitra and D.C. Jiles: J. Mag. Mag. Mater.168 (1997) 169.CrossRefADSGoogle Scholar
  37. [37]
    D.C. Jiles: J. Phys. D (Appl. Phys.)28 (1995) 1537.CrossRefADSGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • D. C. Jiles
    • 1
  1. 1.Ames Laboratory and Department of Materials Science & EngineeringIowa State UniversityAmesU.S.A.

Personalised recommendations