Advertisement

Acta Applicandae Mathematica

, Volume 76, Issue 1, pp 89–115 | Cite as

Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0

  • N. Euler
  • T. Wolf
  • P. G. L. Leach
  • M. Euler
Article

Abstract

We calculate in detail the conditions which allow the most general third-order ordinary differential equation to be linearised in X′′′(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t) dt.

nonlinear ordinary differential equations linearisation invertible transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham-Shrauner, B., Leach, P. G. L., Govinder, K. S. and Ratcliff, G.: Hidden and contact symmetries of ordinary differential equations, J. Phys. A 28 (1995), 6707–6716.Google Scholar
  2. 2.
    Berkovich, L. M.: The method of an exact linearisation of n-order ordinary differential equations, J. Nonlinear Math. Phys. 3 (1996), 341–350.Google Scholar
  3. 3.
    Davis, H. T.: Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1969.Google Scholar
  4. 4.
    Duarte, L. G. S., Duarte, S. E. S. and Moreira, I. C.: One-dimensional equations with the maximum number of symmetry generators, J. Phys. A: Math. Gen. 20 (1987), L701–L704.Google Scholar
  5. 5.
    Duarte, L. G. S., Moreira, I. C. and Santos, F. C.: Linearisation under nonpoint transformations, J. Phys. A: Math. Gen. 27 (1994), L739–L743.Google Scholar
  6. 6.
    Euler, N.: Transformation properties of x" + f 1 (t )x' + f 2 (t )x + f 3 (t )x pn =0, J. Nonlinear Math. Phys. 4 (1997), 310–337.Google Scholar
  7. 7.
    Grebot, G.: The characterization of third order ordinary differential equations admitting a transitive fiber-preserving point symmetry group, J. Math. Anal. Appl. 206 (1997), 364–388.Google Scholar
  8. 8.
    Gusyatnikova, V. N. and Yumaguzhin, V. A.: Contact transformations and local reducibility of ordinary differential equation to the form y"' =0, Acta Appl. Math. 56 (1999), 155–179.Google Scholar
  9. 9.
    Hsu, L. and Kamran, N.: Classification of second-order ordinary differential equations admit-ting Lie groups of fibre-preserving point symmetries, Proc. London Math. Soc. 58 (1989), 387–416.Google Scholar
  10. 10.
    Kummer, E. E.: De generali quadam æquatione differentiali tertii ordinis, J. Math. 100 (1887), 1–9 (reprinted from the Programm des evangelischen Königl und Stadtgymn in Liegnitz for the year 1834).Google Scholar
  11. 11.
    Laguerre, E.: Sur quelques invariants des équations différentielles linéaires, In: Oeuvres 1, Gauthiers-Villars, Paris, 1898, pp. 424–427.Google Scholar
  12. 12.
    Leach, P. G. L.: An exact invariant for a class of time-dependent anharmonic oscillators with cubic anharmonicity, J. Math. Phys. 22 (1981), 465–470.Google Scholar
  13. 13.
    Leach, P. G. L., Cotsakis, S. and Flessas, G. P.: Symmetry, singularities and integrability in complex dynamics I: The reduction problem, J. Nonlinear Math. Phys. 7 (2000), 445–479.Google Scholar
  14. 14.
    Leach, P. G. L. and Mahomed, F. M.: Symmetry Lie algebras of n th order ordinary differential equations, J. Math. Anal. Appl. 151 (1990), 80–107.Google Scholar
  15. 15.
    Lie, S.: Differentialgleichungen, Chelsea, New York, 1967.Google Scholar
  16. 16.
    Liouville, J.: Sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équatione differentielle du second ordre contenant un paramètre variable, J. Math. II (1837), 16–35.Google Scholar
  17. 17.
    Nucci, M. C. and Leach, P. G. L.: The harmony in the Kepler and related problems, J. Math. Phys. 42 (2001), 746–764.Google Scholar
  18. 18.
    Reid, G. J., Wittkopf, A. D. and Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms, Eur. J. Appl. Math. 7 (1996), 604–635.Google Scholar
  19. 19.
    Roberts, C. E. and Belford, G. G.: Stability and entering of the origin for real, nonlinear, autonomous differential equations of third order, SIAM J. Math. Anal. 2 (1971), 133–148.Google Scholar
  20. 20.
    Sarlet, W., Mahomed, F. M. and Leach, P. G. L.: Symmetries of nonlinear differential equations and linearisation, J. Phys. A: Math. Gen. 20 (1987), 277–292.Google Scholar
  21. 21.
    Sundman, K. F.: Mémoire sur le problèm des trois corps, Acta Math. 36 (1912-1913), 105–179.Google Scholar
  22. 22.
    Tresse, M. A.: Détermination des invariants ponctuels de l'équation différentielle ordinaire du seconde ordre y" = w(x,y,y'), Hirzel, Leipzig, 1896.Google Scholar
  23. 23.
    Wolf, T.: The program CRACK for solving PDEs in General Relativity, In: F. W. Hehl, R. A. Puntigam and H. Ruder (eds), Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, Springer, Berlin, 1996, pp. 241–251.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • N. Euler
    • 1
  • T. Wolf
    • 1
  • P. G. L. Leach
    • 1
  • M. Euler
    • 1
  1. 1.Department of Mathematics, LuleåUniversity of TechnologyLuleåSweden

Personalised recommendations