Czechoslovak Journal of Physics

, Volume 49, Issue 12, pp 1737–1742 | Cite as

Laser damage and ablation of differently prepared CaF2(111) surfaces

  • J. SilsEmail author
  • M. Reichling
  • E. Matthias
  • H. Johansen


Ablation thresholds and damage behavior of cleaved and polished CaF2(111) surfaces produced by single shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. The standard polishing yields an ablation threshold of typically 20 J/cm2. When surfaces are polished chemo-mechanically the threshold is raised to 43 J/cm2. Polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. The damage topography of conventionally polished surfaces shows ablation of flakes across the laser heated area with cracks along the cleavage planes. In the case of chemo-mechanical polishing only a few cracks appear. Diamond turned surfaces show small optical absorption, but cracks and ablation of tiles. The origin of such different damage behavior is discussed.


CaF2 Laser Spot Damage Threshold Ablation Threshold Damage Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.M. Wood, Ed.:Laser Damage in Optical Materials, SPIE Optical Engineering Press, Bellingham, 1990.Google Scholar
  2. [2]
    J.C. Miller and D.B. Geohegan, Eds.:Laser Ablation: Mechanisms and Applications, AIP Press, New York, 1994Google Scholar
  3. [3]
    C.N. Afonso, E. Matthias, and T. Szörényi, Eds.:Laser Processing of Surfaces and Thin Films, Appl. Surf. Sci.109/110 (1997).Google Scholar
  4. [4]
    R.E. Russo, D.B. Geohegan, R.F. Haglund, Jr., K. Murakami, Eds.:Laser Ablation, Appl. Surf. Sci.127/129 (1998).Google Scholar
  5. [5]
    IBM J. Res. Dev.41 (1997), Nos. 1/2.1 Google Scholar
  6. [6]
    M. Reichling: inLaser Applications in Microelectronic and Optoelectronic Manufacturing III (Eds. J.J. Dubowski and P.E. Dyer), SPIE Proc. 3274, Bellingham, 1998, p. 2.Google Scholar
  7. [7]
    S. Gogoll, E. Stenzel, H. Johansen, M. Reichling, and E. Matthias: Nucl. Instrum. Meth. B116 (1996) 279.ADSCrossRefGoogle Scholar
  8. [8]
    S. Gogoll, E. Stenzel, M. Reichling, H. Johansen, and E. Matthias: Appl. Surf. Sci.96/98 (1996) 332.ADSCrossRefGoogle Scholar
  9. [9]
    E. Stenzel, S. Gogoll, J. Sils, M. Huisinga, H. Johansen, G. Kästner, M. Reichling, and E. Matthias: Appl. Surf. Sci.109/110 (1997) 162.ADSCrossRefGoogle Scholar
  10. [10]
    H. Johansen, S. Gogoll, E. Stenzel, M. Reichling, and E. Matthias: Radiat. Eff. Defects Solids136 (1995) 151.CrossRefGoogle Scholar
  11. [11]
    K. Putik and T. Gee: Opto Laser Eur.9 (1994) 25.Google Scholar
  12. [12]
    H. Pietsch, Y.J. Chabal, and G.S. Higashi: J. Appl. Phys.78 (1995) 1650.ADSCrossRefGoogle Scholar
  13. [13]
    S. Petzoldt, A.P. Elg, M. Reichling, J. Reif, and E. Matthias: Appl. Phys. Lett.53 (1988) 2005.ADSCrossRefGoogle Scholar
  14. [14]
    E. Matthias, J. Siegel, S. Petzoldt, M. Reichling, H. Skurk, O. Käding, and E. Neske: Thin Solid Films254 (1995) 139.ADSCrossRefGoogle Scholar
  15. [15]
    H. Johansen, W. Erfurth, S. Gogol, E. Stenzel, M. Reichling, and E. Matthias: Scanning19 (1997) 416.Google Scholar
  16. [16]
    M. Reichling, S. Gogoll, E. Stenzel, H. Johansen, M. Huisinga, and E. Matthias: inLaser-Induced Damage in Optical Materials 1995 (Eds. H.E. Bennett, A.H. Guenther, M. Kozlowski, B.E. Newnam, and M.J. Soileau), SPIE Proc. Vol. 2714, Bellingham, 1996, p. 260.Google Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • J. Sils
    • 1
    • 2
    Email author
  • M. Reichling
    • 2
  • E. Matthias
    • 2
  • H. Johansen
    • 3
  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  2. 2.Fachbereich PhysikFreie Universität BerlinBerlinGermany
  3. 3.Max-Planck-Institut für MikrostrukturphysikHalleGermany

Personalised recommendations