Journal of Chemical Ecology

, Volume 29, Issue 3, pp 731–745 | Cite as

Effects of Molasses Grass, Melinis minutiflora Volatiles on the Foraging Behavior of the Cereal Stemborer Parasitoid, Cotesia sesamiae

  • Linnet S. Gohole
  • William A. Overholt
  • Zeyaur R. Khan
  • John A. Pickett
  • Louise E. M. Vet


Olfactory responses of the cereal stemborer parasitoid Cotesiasesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass (Melinis minutiflora). In single-choice tests, females of C. sesamiae chose volatiles from infested and uninfested host plants and molasses grass over volatiles from the control (soil). In dual-choice tests, the wasp preferred volatiles from infested host plants to those from uninfested host plants. There was no discrimination between molasses grass volatiles and those of uninfested maize, uninfested sorghum, or infested maize. The wasp preferred sorghum volatiles over maize. Combining uninfested maize or sorghum with molasses grass did not make volatiles from the combination more attractive as compared to only uninfested host plants. Infested maize alone was as attractive as when combined with molasses grass. Infested sorghum was preferred over its combination with molasses grass. Local growth conditions of the molasses grasses influenced attractiveness to the parasitoids. Volatiles from Thika molasses grass were attractive, while those from Mbita molasses grass were not. Growing the Thika molasses grass in Mbita rendered it unattractive and vice versa with the Mbita molasses grass. This is a case of the same genotype expressing different phenotypes due to environmental factors.

Melinis minutiflora Cotesia sesamiae foraging behavior parasitoid sorghum maize molasses grass stemborers olfactometer plant volatiles intercropping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achterberg, C. van, and Walker, A. K. 1998. Braconidae, pp. 137–185, in A. Polaszek (ed.). African Stemborers: Economic Importance, Taxonomy, Natural Enemies and Control. CAB International, Wallingford, UK.Google Scholar
  2. Acland, J. D. 1971. East African Crops. Longman Group, London, 252pp.Google Scholar
  3. Adams, R. P. 1994. Geographic variation in the volatile terpenoids of Juniperus monosperma and Juniperus osteosperma. Biochem. Syst. Ecol. 22:65–71.Google Scholar
  4. Altieri, M. A., Rosset, P. M., and Nicholls, C. I. 1997. Biological control and agricultural modernization: Towards resolution of some contradictions. Agric. Hum. Val. 14:303–310.Google Scholar
  5. Barros, A. T. M. and Evans, D. E. 1991. Forage with anti-tick potential. Activity of volatile substances on infective larvae of Boophilus microplus. 26:490–503.Google Scholar
  6. Chiera, J. W., Newson, R. M., and Mmaradufu, A. 1977. Anti-tick properties of molasses grass Melinis minutiflora. ICIPE Fifth Annual Report, 44pp.Google Scholar
  7. Dicke, M. 1994. Local and systemic production of volatile herbivoreinduced terpenoids: their role in plant–carnivore mutualism. J. Plant Physiol. 143:465–472.Google Scholar
  8. Dicke, M. and Sabelis, M. W. 1988. Infochemical terminology: Based on cost–benefit analysis rather than origin of compounds? Funct. Ecol. 21:131–139.Google Scholar
  9. Dogget, H. 1988. The origin of the sorghum crop, pp. 40–43, in H. Dogget (ed.). Sorghum, 2nd ed. Tropical Agricultural Series, Longman, London.Google Scholar
  10. Du, Y., Poppy, G. M., and Powell, W. 1996. Relative importance of semiochemicals from first and second trophic levels in host foraging behaviour of Aphidius ervi. J. Chem. Ecol. 22:1591–1605.Google Scholar
  11. Fröman, B. and Persson, S. 1974. An Illustrated Guide to Grasses of Ethiopia. CADU, Asella, 90pp.Google Scholar
  12. Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., and Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defences in Nicotiana attenuata Oecologia 124:408–417.Google Scholar
  13. Ibrahim, K. M. and Kabuye, C. H. S. 1987. An illustrated manual of Kenya Grasses. FAO, Rome. 197pp.Google Scholar
  14. Khan, Z. R., Ampong-Nyarko, K., Chiliswa, P., Hassanali, A., Kimani, S., Lwande, W., Overholt, W., Pickett, J. A., Smart, L. E., Wadhams, L. J., and Woodcock, C. 1997a. Intercropping increases parasitism. Nature 388:631–632.Google Scholar
  15. Khan, Z. R., Chiliswa, P., Ampong-Nyarko, K., Smart, L. E., Polaszek, A., Wandera, J., and Mulaa, M. A. 1997b. Utilisation of wild gramineous plants for management of cereal stemborers in Africa. Insect Sci. Appl. 17:143–150.Google Scholar
  16. Landis, D. A., Wratten, S. D., and Gurr, G. M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201.Google Scholar
  17. Langer, V. 1996. Insect–crop interactions in a diversified cropping system: parasitism by Aleochara bilineata and Trybliographa rapae of the cabbage root fly, Delia radicum, in cabbage in the presence of winter clover. Entomol. Exp. Appl. 80:365–374.Google Scholar
  18. Letourneau, D. K. and Altieri, M. A. 1999. Environmental management to enhance biological control in agroecosystems, pp. 319–354, in T. S. Bellows and T. W. Fisher (Eds.). Handbook of Biological Control. Academic Press, San Diego.Google Scholar
  19. Mohyuddin, A. I., and Greathead, D. J. 1970. An annotated list of the parasites of graminaceous stemborers in East Africa, with a discussion of their potential in biological control. Entomophaga 15:241–274.Google Scholar
  20. Mwangi, E. N., Essuman, S., Kaaya, G. P., Nyandat, E., Munyinyi, D., and Kimondo, M. G. 1995. Repellency of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Health Prod. 27:211–216.Google Scholar
  21. Ngi-Song, A. J., Overholt, W. A., Njagi, P. N. G., Dicke, M., Ayertey, J. N., and Lwande, W. 1996. Volatile infochemicals used in host and host habitat location by Cotesia flavipes Cameron and Cotesia sesamiae Cameron (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminae. J. Chem. Ecol. 22:307–323.Google Scholar
  22. Ogol, C. P. K. O., Spence, J. R., and Keddie, A. 1998. Natural enemy abundance and activity in a maize–Leucaena agroforestry system in Kenya. Environ. Entomol. 27:1444–1451.Google Scholar
  23. Oloo, G. W. 1989. The role of natural enemies in population dynamics of Chilo partellus Swinhoe (Pyralidae) under subsistence farming systems in Kenya. Insect Sci. Appl. 10:243–251.Google Scholar
  24. Omwega, C. O. and Overholt, W. A. 1997. Progeny production and sex ratios of field populations of Cotesia flavipes and Cotesia sesamiae reared from gramineous stemborers in coastal Kenya. Insect Sci. Appl. 17:137–142.Google Scholar
  25. Onyango, F. O. and Ochieng'-Odero, J. P. R. 1994. Continuous rearing of the maize stemborer Busseola fusca on an artificial diet. Entomol. Exp. Appl. 73:139–144.Google Scholar
  26. Overholt, W. A., Ngi-Song, A. J., Kimani, S. W., Mbapila, J., Lammers, P., and Kioko, E. 1994. Ecological considerations of the introduction of Cotesia flavipes Cameron (Hymenoptera: Braconidae) for the biological control of Chilo partellus Swinhoe (Lepidoptera: Pyralidae) in Africa. Biocontrol News Inf. 15:19N-24N.Google Scholar
  27. Potting, R. P. J., Vet, L. E. M., and Dicke, M. 1995. Host microhabitat location by the stemborer parasitoid Cotesia flavipes: the role of locally systemically induced plant volatiles. J. Chem. Ecol. 21:525–539.Google Scholar
  28. Prates, H. T., Oliviera, A. B., Leite, R. C., and Craveiro, A. A. 1993. Anti-tick activity and chemical composition of Melinis minutiflora essential oil. 28:621–625.Google Scholar
  29. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  30. Rafii, Z. A., Dodd, R. S., and Fromard, F. 1996. Biogeographic variation in foliar waxes of mangrove species. Biochem. Syst. Ecol. 24:341–345.Google Scholar
  31. Rutledge, C. E. and Wiedenmann, R. N. 1999. Habitat preferences of three congeneric braconid parasitoids: implications for host-range testing in biological control. Biol. Control 16:144–154.Google Scholar
  32. Smith, J. W. and Wiedenmann, R. N. 1997. Foraging strategies of stemborer parasites and their application to biological control. Insect Sci. Appl. 17:37–49.Google Scholar
  33. Sokal, R. R. and Rohlf, F. J. 1995. Biometry. The Principles and Practices of Statistics in Biological Research, 3rd ed. Freeman and Company, New York.Google Scholar
  34. Songa, J. M. 1999. Distribution, importance and management of stemborers (Lepidoptera) in maize production systems of semi-arid Eastern Kenya, with emphasis on biological control. PhD thesis. Kenyatta University, Nairobi, Kenya.Google Scholar
  35. Steinberg, S., Dicke, M., and Vet, L. E. M. 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata J. Chem. Ecol. 19:47–59.Google Scholar
  36. Takabayashi, J., Noda, T., and Takahashi, S. 1991. Plants produce attractants for Apanteles kariyai, a parasitoid of Pseudaletia separata: cases of “communication” and “misunderstanding” in parasitoid–plant interactions. Appl. Entomol. Zool. 26:237–243.Google Scholar
  37. Thompson, K. C., Roa, E., and Romero, N. 1978. Anti-tick grasses as the basis for developing practical tropical tick control packages. Trop. Anim. Health Prod. 10:179–182.Google Scholar
  38. Verkerk, R. H. J., Leather, S. R., and Wright, D. J. 1998. The potential for manipulating crop-pest-natural enemy interactions for improved insect pest management. Bull. Entomol. Rev. 88:493–501.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Linnet S. Gohole
    • 1
    • 2
  • William A. Overholt
    • 3
  • Zeyaur R. Khan
    • 3
  • John A. Pickett
    • 4
  • Louise E. M. Vet
    • 1
    • 5
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.Department of Crop Production and Seed TechnologyMoi UniversityEldoretKenya
  3. 3.The International Centre of Insect Physiology and EcologyNairobiKenya
  4. 4.IACR-Rothamsted, HarpendenHertsfordshireUK
  5. 5.Netherlands Institute of Ecology (NIOO-KNAW)MaarsenThe Netherlands

Personalised recommendations