Czechoslovak Journal of Physics

, Volume 50, Issue 11, pp 1283–1290 | Cite as

Local field theory on κ-Minkowski space, star products and noncommutative translations

  • P. Kosiński
  • P. Maślanka
  • J. Lukierski
Article

Abstract

We consider local field theory on κ-deformed Minkowski space which is an example of solvable Lie-algebraic noncommutative structure. Using integration formula over κ-Minkowski space and κ-deformed Fourier transform, we consider for deformed local fields the reality conditions as well as deformation of action functionals in standard Minkowski space. We present explicit formulas for two equivalent star products describing CBH quantization of field theory on κ-Minkowski space. We express also via star product technique the noncommutative translations in κ-Minkowski space by commutative translations in standard Minkowski space.

Keywords

Hopf Algebra Quantum Group Minkowski Space Poisson Structure Star Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Dopplicher, K. Fredenhagen, and J. Roberts: Phys. Lett. B331 (1994) 39.CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    L.J. Garay: Int. J. Mod. Phys. A10 (1995) 145.CrossRefADSGoogle Scholar
  3. [3]
    N. Seiberg and E. Witten: JHEP 9909: 032 (1999).Google Scholar
  4. [4]
    J. Madore, S. Schraml, P. Schupp, and J. Wess: hep-th/0001203.Google Scholar
  5. [5]
    N. Seiberg, L. Susskind, and N. Toumbas: hep-th/0005040.Google Scholar
  6. [6]
    P. Podleś and S.L. Woronowicz: Commun. Math. Phys.178 (1996) 61.CrossRefADSGoogle Scholar
  7. [7]
    S. Majid:Foundations of Quantum Group Theory, Cambridge Univ. Press, 1995.Google Scholar
  8. [8]
    J. Lukierski, A. Nowicki, H. Ruegg, and V.N. Tolstoy: Phys. Lett. B264 (1991) 331.CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    S. Giller, P. Kosiński, J. Kunz, M. Majewski, and P. Maślanka: Phys. Lett. B286 (1992) 57.CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    S. Zakrzewski: J. Phys. A27 (1994) 2075.MATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    S. Majid and H. Ruegg: Phys. Lett. B334 (1994) 384.MathSciNetGoogle Scholar
  12. [12]
    J. Lukierski, H. Ruegg, and W.J. Zakrzewski: Ann. Phys.243 (1995) 90.MATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    V. Kathotia: math.QA/9811174.Google Scholar
  14. [14]
    H. Garcia-Compean and J.F. Plebański: hep-th/9907183.Google Scholar
  15. [15]
    P. Kosiński, J. Lukierski, and P. Maślanka: Phys. Rev. D62 (2000) 025004; hep-th/9902037.Google Scholar
  16. [16]
    G. Amelino-Camelia and S. Majid: hep-th/9907110.Google Scholar
  17. [17]
    S. Imai and N. Sasakura: hep-th/0005178.Google Scholar
  18. [18]
    B. Jurco, S. Schraml, P. Schupp, and J. Wess: hep-th/0006246.Google Scholar
  19. [19]
    P. Kosiński, J. Lukierski, P. Maślanka, and A. Sitarz: Czech. J. Phys.48 (1998) 1407.CrossRefADSGoogle Scholar
  20. [20]
    P. Kosiński, J. Lukierski, and P. Maślanka: (in preparation).Google Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • P. Kosiński
    • 1
  • P. Maślanka
    • 1
  • J. Lukierski
    • 2
  1. 1.Institute of PhysicsUniversity of LódźLódźPoland
  2. 2.Institute of Theoretical PhysicsUniversity of WroclawWrocławPoland

Personalised recommendations