Boundary-Layer Meteorology

, Volume 107, Issue 3, pp 501–530

Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier–Stokes Equations (k Turbulence Model)

  • F. A. Castro
  • J. M. L. M. Palma
  • A. Silva Lopes
Article

Abstract

The neutrally stratified flow over the Askervein Hill was simulatedusing a terrain-following coordinatesystem and a two-equation(k - ∈) turbulence model. Calculations were performed on awide range of numerical grids to assess, among other things, theimportance of spatial discretization and the limitations of theturbulence model. Our results showed that a relatively coarse gridwas enough to resolve the flow in the upstream region of the hill;at the hilltop, 10 m above the ground, the speed-up was 10% lessthan the experimental value. The flow's most prominent feature wasa recirculating region in the lee of the hill, which determinedthe main characteristics of the whole downstream flow. This regionhad an intermittent nature and could be fully captured only in the caseof a time-dependent formulation and a third-order discretization ofthe advective terms. The reduction of the characteristic roughnessnear the top of the hill was also taken into account, showing theimportance of this parameter, particularly in the flow close to theground at the summit and in the downstream side of the hill.Calculations involving an enlarged area around the Askervein Hillshowed that the presence of the nearby topography affected the flowneither at the top nor downstream of the Askervein Hill.

Askervein Hill Atmospheric flow over topography k - ∈ turbulence model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljaars, A. C. M., Walmsley, J. L., and Taylor, P. A.: 1987, 'A Mixed Spectral Finite-Difference Model for Neutrally Stratified Boundary-Layer Flow over Roughness Changes and Topography', Boundary-Layer Meteorol. 38, 273-303.Google Scholar
  2. Castro, F. A.: 1997, Numerical Methods for the Simulation of Atmospheric Flows over Complex Terrain, Ph.D. Thesis, University of Porto, Portugal, 267 pp. (in Portuguese).Google Scholar
  3. Castro, F. A. and Palma, J. M. L. M.: 2002, 'VENTOSTM: A Computer Code for Simulation of Atmospheric Flows over Complex Terrain', Technical Report, Available from the authors, 21 pp.Google Scholar
  4. Durbin, P. A. and Reif, B. A. P.: 2001, Statistical Theory and Modeling for Turbulent Flows, John Wiley & Sons, Chichester, New York, 285 pp.Google Scholar
  5. Gresho, P. and Lee, R.: 1981, 'Don't Suppress the Wiggles-They're Telling you Something!', Comput. Fluids 9, 223-253.Google Scholar
  6. Jackson, P. S. and Runt, J. C. R.: 1975, 'Turbulent Wind over a Low Hill', Quart. J. Roy. Meteorol. Soc. 101, 929-955.Google Scholar
  7. Kenjereš, S. and Hanjalić, K.: 2002, 'Combined Effects of Terrain Topography and Thermal Stratification on Pollutant Dispersion in a Town Valley: A T-RANS Simulation', J. Turbul. 3(26), (http:/jot.iop.org).Google Scholar
  8. Kim, H. and Patel, V.: 2000, 'Test of Turbulence Models forWind Flow over Terrain with Separation and Recirculation', Boundary-Layer Meteorol. 94, 5-21.Google Scholar
  9. Knupp, P. and Steinberg, S.: 1994, Fundamentals of Grid Generation, CRC Press, Boca Raton, 286 pp.Google Scholar
  10. Launder, B. E. and Sharma, B. I.: 1974, 'Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow near a Spinning Disc', Lett. Heat Mass Trans. 1, 131-138.Google Scholar
  11. Launder, B. F. and Spalding, D. B.: 1972, Mathematical Model of Turbulence, Academic Press, London, 169 pp.Google Scholar
  12. Leonard, B. P.: 1979, 'A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation', Comput. Meth. Appl. Mech. Eng. 19, 59-98.Google Scholar
  13. Mason, P. J. and King, J. C.: 1985, 'Measurements and Predictions of Flow and Turbulence over Isolated Hill of Moderate Slop', Quart. J. Roy. Meteorol. Soc. 111, 617-640.Google Scholar
  14. Maurizi, A., Palma J. M. L. M., and Castro, F. A.: 1998, 'Numerical Simulation of the Atmospheric Flow in a Mountainous Region of the North of Portugal', J. Wind Eng. Ind. Aerodyn. 74-76, 219-228.Google Scholar
  15. Mickle, R. F., Cook, N. J., Hoff, A. M., Jensen, N. O., Salmon, J. R., Taylor, P. A., Tetzlaff, G., and Teunissen, H. W.: 1988, 'The Askervein Hill Project: Vertical Profiles of Wind and Turbulence', Boundary-Layer Meteorol. 43, 143-169.Google Scholar
  16. Miller, T. F. and Schmidt, F. W.: 1988, 'Use of a Pressure-Weighted Interpolation Method for the Solution of the Incompressible Navier-Stokes Equations on a Nonstaggered Grid System', Numer. Heat Transfer 14, 212-233.Google Scholar
  17. Nakayama, A. and Miyashita, K.: 2001, 'URANS Simulation of Flow over Smooth Topography', Int. J. Numer. Meth. H. 11, 723-743.Google Scholar
  18. Patankar, S. V.: 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington, DC, 197 pp.Google Scholar
  19. Raithby, G. D., Stubley, G. D., and Taylor, P. A.: 1987, 'The Askervein Hill Project: A Finite Control Volume Prediction on Three-Dimensional Flows over the Hill', Boundary-Layer Meteorol. 39, 107-132.Google Scholar
  20. Rhie, C. M. and Chow, W. L.: 1983, 'Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation', AIAA J. 21, 1525-1532.Google Scholar
  21. Schlichting, H. and Gersten, K.: 2000, Boundary Layer Theory, Springer, Berlin, 8th revised and enlarged edition, 799 pp.Google Scholar
  22. Silva Lopes, A.: 2000, Flow Simulation in Complex Geometries by Large Eddy Simulation, Ph.D. Thesis, University of Porto, Portugal, 169 pp. (in Portuguese).Google Scholar
  23. Taylor, P. A.: 1977, 'Some Numerical Studies of Surface Boundary-Layer Flow over Gentle Topography', Boundary-Layer Meteorol. 11, 439-465.Google Scholar
  24. Taylor, P. A. and Teunissen, H. W.: 1983, ASKERVEIN' 82: Report on the September/October 1982 Experiment to Study Boundary Layer Flow over Askervein, South Uist, Report: MSRS-83-8, Technical Report, Meteorological Services Research Branch Atmospheric Environment Service 4905 Dufferin Street, Downsview, Ontario, Canada M3H 5T4.Google Scholar
  25. Taylor, P. A. and Teunissen, H. W.: 1985, The Askervein Hill Project: Report on the Sept./Oct. 1983, Main Field Experiment, Research Report MSRB-84-6, Technical Report, Meteorological Services Research Branch Atmospheric Environment Service 4905 Dufferin Street, Downsview, Ontario, Canada M3H 5T4.Google Scholar
  26. Teunissen, H.W., Shokr, M. E., Bowen, A. J., Wood, C. J., and Green, D.W. R.: 1987, 'The Askervein Hill Project: Wind Tunnel Simulations at Three Length Scales', Boundary-Layer Meteorol. 40, 1-29.Google Scholar
  27. Walmsley, J. L. and Taylor, P. A.: 1996, 'Boundary-Layer Flow over Topography: Impacts of the Askervein Study', Boundary-Layer Meteorol. 78, 291-320.Google Scholar
  28. Wood, N.: 1995, 'The Onset of Separation in Neutral, Turbulent Flow over Hills', Boundary-Layer Meteorol. 76, 137-164.Google Scholar
  29. Xu, D., Ayotte, K. W., and Taylor, P. A.: 1994, 'Development of a Non-Linear Mixed Spectral Finite Difference Model for Turbulent Boundary-Iayer Flow over Topography', Boundary Layer-Meteorol. 70, 341-367.Google Scholar
  30. Zeman, O. and Jensen, N. O.: 1987, 'Modification of Turbulence Characteristics in Flow over Hills', Quart. J. Roy. Meteorol. Soc. 113, 55-80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • F. A. Castro
    • 1
  • J. M. L. M. Palma
    • 2
  • A. Silva Lopes
    • 2
  1. 1.Instituto Superior de Engenharia do PortoPortugal
  2. 2.Faculdade de Engenharia da Universidade do PortoPortugal

Personalised recommendations