Advertisement

Approximation Theory and Its Applications

, Volume 17, Issue 4, pp 17–35 | Cite as

Convergence and Rate of Approximation in BVΦ for a Class of Integral Operators

  • S. Sciamannini
  • G. Vinti
Article

Abstract

We obtain estimates and convergence results with respect to ϕ-variation in spaces BVΦ for a class of linear integral operators whose kernels satisfy a general homogeneity condition. Rates of approximation are also obtained. As applications, we apply our general theory to the case of Mellin convolution operators, to that one of moment operators and finally to a class of operators of fractional order.

Keywords

General Theory Integral Operator Fractional Order Convergence Result Homogeneity Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barbieri, F., Approssimazione mediante nuclei momento, Atti Sem. Mat. Fis. Univ. Modena, 32(1983), 308-328.Google Scholar
  2. [2]
    Bardaro, C., On Approximation Properties for Some Classes of Linear Operators of Convolution Type, Atti Sem. Mat. Fis. Univ. Modena, 33(1984), 329-356.Google Scholar
  3. [3]
    Bardaro, C. and Mantellini, I., Linear Integral Operators with Homogeneous Kernel: Approximation Properties in Modular Spaces. Applications to Mellin Type Convolution Operators and to Some Classes of Fractional Integrals, Applied Math. Rev., Vol. I, G. Anastassiou Ed. World Scientific Co., (2000), 45-67.Google Scholar
  4. [4]
    Bardaro, C. and Vinti, G., On Convergence of Moment Operators with respect to φ-Variation, Applicable Analysis, 41(1991), 247-256.Google Scholar
  5. [5]
    Bardaro, C. and Vinti, G., Modular Estimates of Integral Operators with Homogeneous Kernels in Orlicz type Spaces, Results in Mathematics, 19(1991), 46-53.Google Scholar
  6. [6]
    Bardaro, C. and Vinti, G., Some Estimates of Integral Operators with respect to the Multidimensional Vitali ψ-Variation and Applications in Fractional Calculus, Rendiconti di Matematica, Serie VII, 11, Roma(1991), 405-416.Google Scholar
  7. [7]
    Bardaro, C. and Vinti, G., On the Order of Modular Approximation for Nets of Integral Operators in Modular Lipschitz Classes, Functiones & Approximatio, 26(1998), 135-151.Google Scholar
  8. [8]
    Butzer, P. L and Jansche, S., A Direct Approach to the Mellin Transform, J. Fourier Anal. Appl., 3(1997), 325-376.Google Scholar
  9. [9]
    Butzer, P. L. and Jansche, S., The Exponential Sampling Theorem of Signal Analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl. Vol, 46, a Special Volume Dedicated to Professor Calogero Vinti, (1998), 99-122.Google Scholar
  10. [10]
    Butzer, P. L. and Jansche, S., Mellin-Fourier Series and the Classical Mellin Transform, in print in Computers and Mathematics with Applications.Google Scholar
  11. [11]
    Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation, I, Academic Press, New York-London, 1971.Google Scholar
  12. [12]
    Butzer, P. L. and Westphal, U., An Access ot Fractional Differentiation via Fractional Difference Quotiens, Fractional Calculus and its Applications, Proceedings of the Int. Conf. Univ. New-Haden, Springer-Verlag, (1974), 116-145.Google Scholar
  13. [13]
    Erdélyi, A., On Fractional Integration and its Application to the Theory of Hankel Transforms, Quart. J. Math., 11(1940), 293.Google Scholar
  14. [14]
    Fiocchi, C., Variazione di Ordine α e Dimensione di Hausdorff Degli Insiemi di Cantor, Atti Sem. Mat. Fis. Univ. Modena, 34(1991), 649-667.Google Scholar
  15. [15]
    Gogatishvili, A. and Kokilashvili, V., Criteria of Weighted Inequalities in Orlicz Classes for Maximal Functions Defined on Homogeneous Type Spaces, Proc. Georgian Acad. Sci. Math., 6(1993), 617-645.Google Scholar
  16. [16]
    Kober, H., On Fractional Integrals and Derivatives, Quart. J. Math. 11(1940), 193.Google Scholar
  17. [17]
    Kozlowski, W.M., Modular Function Spaces, Pure Appl. Math., Marcel Dekker, New York and Basel, 1988.Google Scholar
  18. [18]
    Love, E. R., Some Inequalities for Fractional Integrals, Linear Spaces and Approximation, Proc. Conf. Mathematical Research Institute, Oberwolfach, 1977,177-184. International Series of Numerical Mathematics, 40 Birkhauser Verlag, Basel, Stuttgart, 1978.Google Scholar
  19. [19]
    Mantellini, I. and Vinti, G., Modular Estimates for Nonlinear Integral Operators and Applications in Fractional Calculus, Numer. Funct. Anal. and Optimiz., 17(1&2)(1996), 143-165.Google Scholar
  20. [20]
    Mantellini, I. an Vinti, G., Φ-Variation and Nonlinear Integral Operators, Atti Sem. Mat. Fis. Univ. Modena, Suppl., Vol 46(1998), 847-862, a Special Issue of the International Conference in Honour of Prof. Calogero Vinti.Google Scholar
  21. [21]
    Martinez, C., Sanz, M. and Martinez, D., About Fractional Integrals in the Space of Locally Integrable Fucntions, J. Math. Anal. Appl., 167(1992), 111-122.Google Scholar
  22. [22]
    Mikusinski, J., Operational Calculus, Pergamon Press, Warszava, 1959.Google Scholar
  23. [23]
    Musielak, J., Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034(1983).Google Scholar
  24. [24]
    Musielak, J. and Orlicz, W., On Generalized Variation I, Studia Math., 18(1959), 11-41.Google Scholar
  25. [25]
    Musielak, J. and Orlicz, W., On Modular Spaces, Studia Math., 28(1959), 49-65.Google Scholar
  26. [26]
    Oldham, K. B. and Spainer, J., The Fractional Calculus, Academic Press, New York, 1974.Google Scholar
  27. [27]
    Rainville, E. D., Special Functions, McMillan Co., New York, 1960.Google Scholar
  28. [28]
    Sneddon, I. N., The Use in Mathematical Physics of Erdélyi-Kober Operators and of Their Generalizations, Proc. Int. Conf. Univ. New Haven, 1974, Lecture Notes in Math., 457 (1975), 37-79.Google Scholar
  29. [29]
    Vinti, C., Perimetro-Variazione, Annali Scuola Norm. Sup. Pisa, Serie II, 43(1964), 201-231.Google Scholar
  30. [30]
    Vinti, C., Sull' Approssimazione in Perimetro e in Area, Atti Sem. Mat. Fis. Univ. Modena, 13(1964), 187-197.Google Scholar
  31. [31]
    Vinti, C., A Survey on Recent Results of the Mathematical Seminar in Perugia, Inspired by the Work of Professor P.L. Butzer, Result. Math., 34(1998), 32-55.Google Scholar
  32. [32]
    Vinti, G., Generalized ψ-Variation in the Sense of Vitali: Estimates for Integral Operators and Applications in Fractional Calculus, Commentationes Math., 34(1994), 199-213.Google Scholar
  33. [33]
    Young, L. C., General Inequalities for Stieltjes Integrals and the Convergence of Fourier Series, Math. Annalen, 115(1938), 581-612.Google Scholar
  34. [34]
    Zanelli, V., Funzioni Momento Convergenti dal Basso in Variazione di Ordine Non Intero, Atti Sem. Mat. Fis. Univ. Modena, 30(1981), 355-369.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. Sciamannini
    • 1
  • G. Vinti
    • 1
  1. 1.Università, degli Studi di PerugiaItaly

Personalised recommendations