Journal of Statistical Physics

, Volume 111, Issue 3–4, pp 967–992 | Cite as

On the Kohn-Sham Equations with Periodic Background Potentials

  • E. Prodan
  • P. Nordlander

Abstract

We study the question of existence and uniqueness for the finite temperature Kohn-Sham equations. For finite volumes, a unique soluion is shown to exists if the effective potential satisfies a set of general conditions and the coupling constant is smaller than a certain value. For periodic background potentials, this value is proven to be volume independent. In this case, the finite volume solutions are shown to converge as the thermodynamic limit is considered. The local density approximation is shown to satisfy the general conditions mentioned above.

Density functional theory Kohn-Sham equations existence and uniqueness thermodynamic limit periodic potentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Eschrig, The Fundamentals of Density Functional Theory (Teubner Verlagsgesellschaft, Stuttgart, 1996).Google Scholar
  2. 2.
    D. Hohenberg and W. Kohn, Phys. Rev. B 136:864(1964).Google Scholar
  3. 3.
    N. D. Mermin, Phys. Rev. A 137:1441(1965).Google Scholar
  4. 4.
    W. Kohn and L. J. Sham, Phys. Rev. 140:1133(1965).Google Scholar
  5. 5.
    M. V. Stoitsov and I. Z. Petkov, Ann. Physics 184:121(1988).Google Scholar
  6. 6.
    I. S. O. Bokanowski and H. Zidani, Nonlinear Anal. 41:33(2000).Google Scholar
  7. 7.
    H. C. Kaiser and J. Rehberg, Z. Angew. Math. Phys. 50:423(1999).Google Scholar
  8. 8.
    I. Catto, C. L. Bris, and P. Lions, The Mathematical Theory of Thermodynamics Limits: Thomas-Fermi Type Models (Oxford University Press, Oxford, 1998).Google Scholar
  9. 9.
    I. Catto, C. L. Bris, and P. L. Lions, Ann. Inst. H. Poincare 18:687(2001).Google Scholar
  10. 10.
    E. Prodan and P. Nordlander, J. Math. Phys. 42:3390(2001).Google Scholar
  11. 11.
    E. Prodan and P. Nordlander, J. Math. Phys. 42:3407(2001).Google Scholar
  12. 12.
    E. Prodan and P. Nordlander, J. Math. Phys. 42:3424(2001).Google Scholar
  13. 13.
    V. Bach, E. H. Lieb, M. Loss, and J. P. Solovej, Phys. Rev. Lett. 72:2981(1994).Google Scholar
  14. 14.
    E. H. Lieb, in Density Functional Methods in Physics, R. Dreizler and J. D. Providencia, eds. (Plenum Press, New York, 1985), pp. 31-80.Google Scholar
  15. 15.
    G. D. Mahan, Many-Particle Physics (Plenum, New York, 1990).Google Scholar
  16. 16.
    E. Lieb and B. Simon, Commun. Math. Phys. 53:185(1977).Google Scholar
  17. 17.
    P. Lions, Commun. Math. Phys. 109:33(1987).Google Scholar
  18. 18.
    B. Simon, Trace Ideals and Their Applications (Cambridge University Press, New York, 1979).Google Scholar
  19. 19.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1978), Vol. IV.Google Scholar
  20. 20.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol. I.Google Scholar
  21. 21.
    J. Perdew and Y. Wang, Phys. Rev. B 45:13244(1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • E. Prodan
    • 1
  • P. Nordlander
    • 1
  1. 1.Department of Physics-MS 61Rice UniversityHouston

Personalised recommendations